分析 若关于x的二次方程mx2-2(m+1)x+m=0有两个不等的实数根,则$\left\{\begin{array}{l}m≠0\\ 4(m+1)^{2}-4{m}^{2}>0\end{array}\right.$,解得答案.
解答 解:∵关于x的二次方程mx2-2(m+1)x+m=0有两个不等的实数根,
∴$\left\{\begin{array}{l}m≠0\\ 4(m+1)^{2}-4{m}^{2}>0\end{array}\right.$,
解得:m∈(-$\frac{1}{2}$,0)∪(0,+∞),
故答案为:(-$\frac{1}{2}$,0)∪(0,+∞).
点评 本题考查的知识点是一元二次方程根的个数与判别式的关系,本题易忽略m≠0的限制造成错误.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6$\sqrt{3}$ | B. | -6$\sqrt{3}$ | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆 | B. | 椭圆 | C. | 双曲线 | D. | 抛物线 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | 1 | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com