精英家教网 > 高中数学 > 题目详情
13.三个女生和四个男生排成一排
(Ⅰ)如果女生必须全排在一起,有多少种不同的排法?
(Ⅱ)如果女生必须全分开,有多少种不同的排法?
(Ⅲ)如果两端不能都排女生,有多少种不同的排法?

分析 (Ⅰ)用捆绑法,分两步进行,先3名女生看为一个整体,再将其与4名男生进行全排列,分别求出其情况数目,进而由分步计数原理计算可得答案;
(Ⅱ)用插空法,分两步进行,先将4名男生全排列,有5个空位,在5个空位中任选3个,安排3名女生,分别求出其情况数目,进而由分步计数原理计算可得答案;
(Ⅲ)用排除法,首先计算7人进行全排列的情况数目,再计算两端都站女生即先在3名女生中任取2人,再将剩余的5人安排在其他5个位置,的情况数目,用排除法即可得答案

解答 解:(Ⅰ)根据题意,用捆绑法,3名女生看为一个整体,考虑其顺序有A33种情况,
再将其与4名男生进行全排列,有A55种情况,
则共有A55×A33=720种排法;
(Ⅱ)用插空法,先将4名男生全排列,有A44种情况,
排好后,有5个空位,在其中任选3个,安排3名女生,有A53种情况,
则共有A44A53=1440种排法;
(Ⅲ)用排除法,7人进行全排列,有A77种排法,
两端都站女生,即先在3名女生中任取2人,再将剩余的5人安排在其他5个位置,有A32•A55种站法,
则共有A77-A32•A55=4320种排法.

点评 本题考查排列、组合的运用,注意优先分析特殊位置、特殊元素;其次要掌握不相邻问题采用插空法,相邻问题采用捆绑法等常见问题的处理方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,Sn=2an-2.
(1)求数列{an}的通项公式;
(2)设bn=$\left\{\begin{array}{l}{\frac{{{log}_{2}a}_{n}}{{n}^{2}(n+2)},n为奇数}\\{\frac{2n}{{a}_{n}},n为偶数}\end{array}\right.$,Tn为{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知双曲线的离心率$e=\frac{5}{3}$,且焦点到渐近线的距离为4,则该双曲线实轴长为(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的右焦点为F,左、右顶点分别为A1,A2,以A1A2为直径的圆与双曲线的一条渐近线交于点P(点P在第一象限内),若直线FP平行于另一条渐近线,则该双曲线离心率e的值为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.抛物线y2=8x的准线与双曲线C:$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1的两条渐近线所围成的三角形面积为2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以原点与曲线上任一点连线的斜率k为参数,化普通方程4x2-9y2=36(x<0)为参数方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知抛物线C:y2=2px(p>0),O为坐标原点,F为其焦点,准线与x轴交点为E,P为抛物线上任意一点,则$\frac{|PF|}{|PE|}$(  )
A.有最小值$\frac{\sqrt{2}}{2}$B.有最小值1C.无最小值D.最小值与p有关

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若($\sqrt{x}$+$\frac{a}{\sqrt{x}}$)4展开式的常数项和为54,且a>0,则a=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知递增的等差数列{an}的首项是1,Sn是其前n项和,且$\frac{1}{S_1}+\frac{1}{S_2}+\frac{1}{S_3}=\frac{3}{2}$(n∈N*).
(1)求数列{an}的通项公式an
(2)设bn=an•2an,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案