精英家教网 > 高中数学 > 题目详情
18.以原点与曲线上任一点连线的斜率k为参数,化普通方程4x2-9y2=36(x<0)为参数方程.

分析 将y=kx代入普通方程解出x,y即可.

解答 解:过原点斜率为k的直线方程为y=kx,
把y=kx代入4x2-9y2=36得:(4-9k2)x2=36,
∵x<0,∴x=-$\frac{6}{\sqrt{4-9{k}^{2}}}$.
∴y=kx=-$\frac{6k}{\sqrt{4-9{k}^{2}}}$.
∴4x2-9y2=36(x<0)的参数方程是$\left\{\begin{array}{l}{x=-\frac{6}{\sqrt{4-9{k}^{2}}}}\\{y=-\frac{6k}{\sqrt{4-9{k}^{2}}}}\end{array}\right.$(k为参数).

点评 本题考查了曲线参数方程的求法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在三角形ABC中,角A、B、C所对的边分别为a、b、c,且a=2,∠C=$\frac{π}{4}$,cosB=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,EF是圆O的直径,AB∥EF,点M在EF上,AM、BM分别交圆O于点C、D.设圆O的半径是r,OM=m.
(Ⅰ)证明:AM2+BM2=2(r2+m2);
(Ⅱ)若r=3m,求$\frac{AM}{CM}+\frac{BM}{DM}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=4x的焦点到双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的一条渐近线的距离为$\frac{1}{2}$,则该双曲线的离心率为(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.三个女生和四个男生排成一排
(Ⅰ)如果女生必须全排在一起,有多少种不同的排法?
(Ⅱ)如果女生必须全分开,有多少种不同的排法?
(Ⅲ)如果两端不能都排女生,有多少种不同的排法?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,四面体ABCD中,AB=DC=1,BD=$\sqrt{2}$,AD=BC=$\sqrt{3}$,二面角A-BD-C的平面角的大小为60°,E,F分别是BC,AD的中点,则异面直线EF与AC所成的角的余弦值是(  )
A.$\frac{1}{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{6}}{3}$D.$\frac{2\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在(0,+∞)上的函数f(x)满足:对任意正数a,b,若f(a)-f(b)=1,则a-b<1,
称f(x)是(0,+∞)上的“1级函数”,给出函数f(x)=x3,g(x)=ex,h(x)=x+lnx,其中“1级函数”的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sin(x+$\frac{π}{6}$)cos(x-$\frac{π}{6}$),x∈R
(1)求f(x)的单调递增区间;
(2)设函数g(x)=f(x)+$\sqrt{3}$cos2x-$\frac{\sqrt{3}}{2}$,且g($\frac{α}{2}$)=$\frac{2}{3}$,0<α<π,求g($\frac{π}{4}$+$\frac{α}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=asinx+x2,若f(1)=2,则f(-1)=(  )
A.2B.-2C.1D.0

查看答案和解析>>

同步练习册答案