精英家教网 > 高中数学 > 题目详情
16.在三角形ABC中,角A、B、C所对的边分别为a、b、c,且a=2,∠C=$\frac{π}{4}$,cosB=$\frac{3}{5}$.
(1)求sinA的值;
(2)求△ABC的面积.

分析 (1)由已知利用同角三角函数基本关系式可求sinB的值,利用特殊角的三角函数值,三角形内角和定理,两角和的正弦函数公式即可解得sinA的值.
(2)由(1)及正弦定理可得b=$\frac{asinB}{sinA}$的值,利用三角形面积公式即可计算得解.

解答 解:(1)在△ABC中,∵cosB=$\frac{3}{5}$,∠C=$\frac{π}{4}$,
∴sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4}{5}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{4}{5}$×$\frac{\sqrt{2}}{2}$+$\frac{3}{5}$×$\frac{\sqrt{2}}{2}$=$\frac{7\sqrt{2}}{10}$,
(2)∵由(1)可得:a=2,sinB=$\frac{4}{5}$,sinA=$\frac{7\sqrt{2}}{10}$,
∴由正弦定理可得:b=$\frac{asinB}{sinA}$=$\frac{2×\frac{4}{5}}{\frac{7\sqrt{2}}{10}}$=$\frac{8\sqrt{2}}{7}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}×2×\frac{8\sqrt{2}}{7}×\frac{\sqrt{2}}{2}$=$\frac{8}{7}$.

点评 本题主要考查了同角三角函数基本关系式,特殊角的三角函数值,三角形内角和定理,两角和的正弦函数公式,正弦定理,三角形面积公式在解三角形中的应用,考查了计算能力和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数f(x)是定义在R上的奇函数,且f(x-1)为偶函数,当x∈[0,1]时,f(x)=x${\;}^{\frac{1}{2}}$,若g(x)=f(x)-2x-b有三个零点,则实数b的取值范围是(  )
A.(k-$\frac{1}{8}$,k+$\frac{1}{8}$),k∈ZB.(2k-$\frac{1}{8}$,2k+$\frac{1}{8}$),k∈ZC.(4k-$\frac{1}{8}$,4k+$\frac{1}{8}$),k∈ZD.(8k-$\frac{1}{8}$,8k+$\frac{1}{8}$),k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x∈[0,+∞)}\\{2-x,x∈(-∞,0)}\end{array}\right.$,则f[f(-3)]=26.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知抛物线x2=8y与双曲线$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线交于点A,若点A到抛物线的准线的距离为4,则双曲线的离心率为(  )
A.$\sqrt{3}$B.2C.$\sqrt{5}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}的前n项和为Sn,Sn=2an-2.
(1)求数列{an}的通项公式;
(2)设bn=$\left\{\begin{array}{l}{\frac{{{log}_{2}a}_{n}}{{n}^{2}(n+2)},n为奇数}\\{\frac{2n}{{a}_{n}},n为偶数}\end{array}\right.$,Tn为{bn}的前n项和,求T2n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知f(x)=$\sqrt{(a+2){x}^{2}+bx+a+2}$(a,b∈R)定义域为R,则3a+b的取值范围为[-6,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列关系式中,根式与分数指数幂互化正确的是(  )
A.$\root{3}{a}$•$\sqrt{-a}$=-a${\;}^{\frac{5}{6}}$B.x${\;}^{\frac{2}{4}}$=$\sqrt{x}$C.($\root{3}{{b}^{\frac{3}{2}}}$)${\;}^{\frac{3}{2}}$=b3D.(a-b)${\;}^{-\frac{5}{2}}$=$\sqrt{(a-b)^{-5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.双曲线$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{5}$=1的左焦点到右顶点的距离为(  )
A.1B.2C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.以原点与曲线上任一点连线的斜率k为参数,化普通方程4x2-9y2=36(x<0)为参数方程.

查看答案和解析>>

同步练习册答案