【题目】已知在平面直角坐标系xOy中,椭圆C:(a>b>0)离心率为,其短轴长为2.
(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为k1,k2,且k1k2=,(λ,μ为非零实数),求λ2+μ2的值.
【答案】(1);(2)1
【解析】
(1)由题意可得b=1,运用离心率公式和a,b,c的关系,可得a,b,进而得到椭圆方程;
(2)求得A的坐标,设P(x1,y1),D(x0,y0),运用向量共线坐标表示,结合条件求得P的坐标,代入椭圆方程,可得λ2=,同理得μ2=,即可得λ2+μ2的值.
(1)因为短轴长2b=2,所以b=1,又离心率e=,且a2﹣b2=c2,
解得a=,c=1,则椭圆C的方程为+y2=1;
(2)由(1)可得点 A(﹣,0),设P(x1,y1),D(x0,y0),则y1=k1x1,y0=k2x0,
由可得x0+=λ(x﹣x0),y0=λ(y1﹣y0),
即有x0=,k1x1=y1=y0=k2x0=k2(x1﹣),
两边同乘以k1,可得k12x1=k1k2(x1﹣)=﹣(x1﹣),
解得x1=,将P(x1,y1)代入椭圆方程可得λ2=,
由可得μ2=,可得λ2+μ2=1.
科目:高中数学 来源: 题型:
【题目】如图,已知三棱锥O﹣ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线BE与AC所成角的余弦值;
(2)求直线BE和平面ABC的所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从1至9这9个自然数中任取两个:
恰有一个偶数和恰有一个奇数;至少有一个是奇数和两个数都是奇数;
至多有一个奇数和两个数都是奇数;至少有一个奇数和至少有一个偶数.
在上述事件中,是对立事件的是
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在上的函数及如下的4个命题:
关于x的方程有个不同的零点;
对于实数,不等式恒成立;
在上,方程有5个零点;
时,函数的图象与x轴图成的形的面积是4.
则以上命题正确的为______把正确命题前的序号填在横线上
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如下图所示,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成的角为60°.
(1)求证:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com