精英家教网 > 高中数学 > 题目详情

【题目】已知直线l和平面,若直线l在空间中任意放置,则在平面内总有直线

A.垂直B.平行C.异面D.相交

【答案】A

【解析】

本题可以从直线与平面的位置关系入手:直线与平面的位置关系可以分为三种:直线在平面内、直线与平面相交、直线与平面平行,在这三种情况下再讨论平面中的直线与已知直线的关系,通过比较可知:每种情况都有可能垂直.

当直线l与平面相交时,

平面内的任意一条直线与直线l的关系只有两种:异面、相交,此时就不可能平行了,故B错.

当直线l与平面平行时,

平面内的任意一条直线与直线l的关系只有两种:异面、平行,此时就不可能相交了,故D错.

当直线a在平面内时,

平面内的任意一条直线与直线l的关系只有两种:平行、相交,此时就不可能异面了,故C错.

不管直线l与平面的位置关系相交、平行,还是在平面内,

都可以在平面内找到一条直线与直线垂直,

因为直线在异面与相交时都包括垂直的情况,故A正确.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设圆的圆心为A,直线l过点B(1,0)且与x轴不重合l交圆ACD两点,过BAC的平行线交AD于点E.

I)证明为定值,并写出点E的轨迹方程;

II)设点E的轨迹为曲线C1,直线lC1M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}是等差数列,其中a1=25a4=16

1)数列{an}从哪一项开始小于0

2)求a1+a3+a5+…+a19值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,AB为圆O的直径,点EF在圆OABEF矩形ABCD所在平面和圆O所在平面垂直已知AB=2,EF=1.

(I)求证平面DAF⊥平面CBF

(II)若BC=1,求四棱锥FABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是方程的两根,数列是递增的等差数列,数列的前项和为,且.

1)求数列的通项公式;

2)记,求数列的前.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,均为边长为的等边三角形.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形和菱形所在的平面相互垂直,,的中点.

(1)求证:平面

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M点为圆心的圆及其上一点.

1)设圆Ny轴相切,与圆M外切,且圆心在直线上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点且,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥会的申办成功与“3亿人上冰雪”口号的提出,将冰雪这个冷项目迅速炒“热”.北京某综合大学计划在一年级开设冰球课程,为了解学生对冰球运动的兴趣,随机从该校一年级学生中抽取了100人进行调查,其中女生中对冰球运动有兴趣的占,而男生有10人表示对冰球运动没有兴趣额.

(1)完成列联表,并回答能否有的把握认为“对冰球是否有兴趣与性别有关”?

(2)若将频率视为概率,现再从该校一年级全体学生中,采用随机抽样的方法每次抽取1名学生,抽取5次,记被抽取的5名学生中对冰球有兴趣的人数为,若每次抽取的结果是相互独立的,求的分布列,期望和方差.

附表:

查看答案和解析>>

同步练习册答案