精英家教网 > 高中数学 > 题目详情

图1是一个正方体的表面展开图,MN和PB是两条面对角线,请在图2的正方体中将MN和PB画出来,并就这个正方体解决下列问题

(1) 求证:MN//平面PBD; (2)求证:AQ平面PBD;
(3)求二面角P-DB-M的余弦值。

(1)只需证MN//BD;(2)只需证。(3)

解析试题分析:画出MN和PB如图所示

(1) 证明:在正方体ABCD-PMQN中
  MN//BD  MN//平面PBD     
(2)证明:在正方体ABCD-PMQN中

   

同理可证 :  
        
(3)解: 建立空间直角坐标系如图所示,设正方体的棱长为1
则 A(1,0,0), Q(0,1,1) , C(0,1,0)
由知平面PBD的一个法向量是
平面MBD的一个法向量是

 二面角P-DB-M的余弦值为 .
考点:正方体的的平面展开图;线面平行的判定定理;线面垂直的判定定理;二面角。
点评:综合法求二面角,往往需要作出平面角,这是几何中一大难点,而用向量法求解二面角无需作出二面角的平面角,只需求出平面的法向量,经过简单运算即可,从而体现了空间向量的巨大作用.二面角的向量求法: ①若AB、CD分别是二面的两个半平面内与棱垂直的异面直线,则二面角的大小就是向量的夹角; ②设分别是二面角的两个面α,β的法向量,则向量的夹角(或其补角)的大小就是二面角的平面角的大小。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在空间几何体中,平面,平面平面

(I)求证:平面
(II)如果平面,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正四棱柱的底面边长为2,.

(1)求该四棱柱的侧面积与体积;
(2)若为线段的中点,求与平面所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,圆锥中,为底面圆的两条直径 ,AB交CD于O,且的中点.

(1)求证:平面
(2)求圆锥的表面积;求圆锥的体积。
(3)求异面直线所成角的正切值 .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分) 已知一个四棱锥的三视图如图所示,其中,且,分别为的中点

(1)求证:PB//平面EFG
(2)求直线PA与平面EFG所成角的大小
(3)在直线CD上是否存在一点Q,使二面角的大小为?若存在,求出CQ的长;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,四棱锥中,平面,四边形是矩形,分别是的中点.若

(1)求证:平面
(2)求直线平面所成角的正弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图4平面四边形ABCD中,AB=AD=,BC=CD=BD,设.

(1)将四边形ABCD的面积S表示为的函数;
(2)求四边形ABCD面积S的最大值及此时值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,在平行四边形中,,将沿折起到的位置,使平面平面.
(1)求二面角E-AB-D的大小;
(2)求四面体的表面积和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,在长方体中,,点在棱上移动.

⑴ 证明://平面
⑵证明:
⑶ 当的中点时,求四棱锥的体积.

查看答案和解析>>

同步练习册答案