精英家教网 > 高中数学 > 题目详情
12、定义在R上的函数y=f(x+1)的图象如图所示,它在定义域上是减函数,给出如下命题:①f(0)=1;②f(-1)=1;③若x>0,则f(x)<0;④若x<0,则f(x)>0,其中正确的是(  )
分析:由函数y=f(x+1)的图象,结合函数平移变换,我们易得函数y=f(x)的图象,然后根据图象逐一分析四个结论,即可得到答案.
解答:解:由定义在R上的函数y=f(x+1)的图象

它是由函数y=f(x)的图象向左平移一个单位得到的,
故函数y=f(x)的图象如下图所示:

由图可得:①f(0)=1正确;
②f(-1)=1错误;
③若x>0,则f(x)<0错误;
④若x<0,则f(x)>0正确.
即只有①④正确
故选B.
点评:本题考查的知识点是函数的图象与图象的变化,其中根据函数图象“左加右减”的原则,由函数y=f(x+1)的图象,向右平移一个单位,得到函数y=f(x)的图象是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

11、定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2009)的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

13、定义在R上的函数y=f(x)满足:f(x)=f(4-x),且f(x-2)+f(2-x)=0,则f(508)=
0

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(3-x)=f(x),(x-
3
2
)f′(x)>0(x≠
3
2
)
,若x1<x2,且x1+x2>3,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①“a>b”是“2a>2b”成立的充要条件;
②“a=b”是“lga=lgb”成立的充分不必要条件;
③函数f(x)=ax2+bx(x∈R)为奇函数的充要条件是“a=0”
④定义在R上的函数y=f(x)是偶函数的必要条件是
f(-x)f(x)
=1”

其中真命题的序号是
①③
①③
.(把真命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数y=f(x)满足f(-x)=-f(x),f(1+x)=f(1-x),当x∈[-1,1]时,f(x)=x3,则f(2011)=
-1
-1

查看答案和解析>>

同步练习册答案