在平面直角坐标系xOy中,已知圆C:x2+y2-(6-2m)x-4my+5m2-6m=0,直线l经过点(1,0).若对任意的实数m,定直线l被圆C截得的弦长为定值,则直线l的方程为 .
科目:高中数学 来源: 题型:
如图,已知六棱锥P
ABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论正确的是 .(填序号)
![]()
(第6题)
①PB⊥AD;
②平面PAB⊥平面PBC;
③直线BC∥平面PAE;
④直线PD与平面ABC所成的角为45°.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,一颗棋子从三棱柱的一个顶点沿棱移到相邻的另一个顶点的概率均为
,刚开始时,棋子在上底面点A处,若移了n次后,棋子落在上底面顶点的概率记为pn.
(1) 求p1,p2的值;
(2) 求证:
>
.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,已知圆O:x2+y2=64,圆O1与圆O相交,圆心为O1(9,0),且圆O1上的点与圆O上的点之间的最大距离为21.
(1) 求圆O1的标准方程;
(2) 过定点P(a,b)作动直线l与圆O,圆O1都相交,且直线l被圆O,圆O1截得的弦长分别为d,d1.若d与d1的比值总等于同一常数λ,求点P的坐标及λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
已知A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.
(1)若A∩B=A∪B,求a的值;
(2)若∅A∩B,且A∩C=∅,求a的值;
(3)若A∩B=A∩C≠∅,求a的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com