精英家教网 > 高中数学 > 题目详情
定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=
x2-x,x∈[0,1)
-(0.5)|x-1.5|,x∈[1,2)
若x∈[-4,-2]时,f(x)≥
t
4
-
1
2t
恒成立,则实数t的取值范围是(  )
A.[-2,0)∪(0,l)B.[-2,0)∪[l,+∞)C.[-2,l]D.(-∞,-2]∪(0,l]
当x∈[0,1)时,f(x)=x2-x∈[-
1
4
,0]
当x∈[1,2)时,f(x)=-(0.5)|x-1.5|∈[-1,-
2
2
]
∴当x∈[0,2)时,f(x)的最小值为-1
又∵函数f(x)满足f(x+2)=2f(x),
当x∈[-2,0)时,f(x)的最小值为-
1
2

当x∈[-4,-2)时,f(x)的最小值为-
1
4

若x∈[-4,-2]时,f(x)≥
t
4
-
1
2t
恒成立,
t
4
-
1
2t
≤-
1
4

(t+2)(t-1)
4t
≤0

即4t(t+2)(t-1)≤0且t≠0
解得:t∈(-∞,-2]∪(0,l]
故选D
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
b-
2
x
 
2
x+1
 
+a
是奇函数
(1)a+b=
3
3

(2)若函数g(x)=f(
2x+1
)+f(k-x)
有两个零点,则k的取值范围是
(-1,-
1
2
(-1,-
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+b2x+1+a
是奇函数.
(1)求f(x)的解析式;
(2)用定义证明f(x)为R上的减函数;
(3)若对任意的t∈[-1,1],不等式f(2k-4t)+f(3•2t-k-1)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+12x+1+a
是奇函数,则a=
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

定义域为R的函数f(x)=
1
|x-2|
,(x≠2)
1,(x=2)
,若关于x的方程f2(x)+bf(x)+c=0恰有5个不同的实数解x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数.
(Ⅰ)求实数a值;
(Ⅱ)判断并证明该函数在定义域R上的单调性.

查看答案和解析>>

同步练习册答案