精英家教网 > 高中数学 > 题目详情
已知A、B是抛物线y2=4p上不同的两点,且直线AB的倾斜角为锐角,F为抛物线的焦点,且
FA
=-4
FB
,则直线AB的斜率为(  )
A、
4
3
B、
4
5
C、
3
4
D、
3
5
考点:直线与圆锥曲线的关系
专题:向量与圆锥曲线
分析:抛物线y2=2px(p>0)以原点为顶点,开口向右,焦点F(p,0),由
FA
=-4
FB
,设B(
b2
4p
,b),b<0,
 利用题设条件能推导出b=-p,由此能求出直线AB的斜率.
解答: 解:抛物线y2=4px(p>0)以原点为顶点,开口向右,焦点F(p,0),
FA
=-4
FB

∴B在x轴下方,
设B(
b2
4p
,b),b<0,
FB
=(
b2
4p
-p
,b),
FA
=(-
b2
p
+4p
,-4b),
OA
=
OF
+
FA
=(P,0)+(-
b2
p
+4p
,-4b)=(-
b2
p
+5p
,-4b),
由(-4b)2=4p(-
b2
p
+5p
),
得b2=p2,b=-p,
设直线AB倾斜角为θ,
则tanθ=
b-0
p
4
-p
=
-p
-
3p
4
=
4
3

∴直线AB的斜率为
4
3

故选:A.
点评:本题考查直线的倾斜角的求法,解题时要认真审题,注意抛物线的简单性质、向量知识的灵活运用,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,底面是正方形的四棱锥P-ABCD,平面PCD⊥平面ABCD,PC=PD=CD=2.
(Ⅰ)求证:PD⊥BC;
(Ⅱ)求直线PA与平面ABCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
y2
a2
-
x2
b2
=1(a>0,b>0)的离心率为
6
2
,则双曲线的渐近线方程为(  )
A、y=±2x
B、y=±
2
x
C、±
2
2
x
D、y=±
1
2
x

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明:EB∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,离心率为e,直线l:y=ex+a与x轴、y轴分别交于点A,B,M是直线l与椭圆C的一个公共点.若
AM
AB
,则λ+e2=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,AC=1,BC=x,D为斜边AB的中点.将△BCD沿直线CD翻折.若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数的图象过坐标原点,且在点(-1,f(-1)).处的切线的斜率是-5,函数f(x)=
-x3+x2+bx+c,x<1
alnx,x≥1

(Ⅰ)求实数b,c的值;
(Ⅱ)求f(x)在区间[-1,2]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(α)=
sin(π-α)cos(2π-α)sin(-α+
3
2
π)
cos(-π-α)cos(-α+
3
2
π)

(1)化简f(α);
(2)若α是第四象限角,且cos(
2
-α)=
1
3
,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

a,b∈R,记min{a,b}=
a,a≤b
b,a>b
,函数f(x)=min{2-x2,x}(x∈R)的最大值(  )
A、1
B、
1
2
C、
3
2
D、2

查看答案和解析>>

同步练习册答案