精英家教网 > 高中数学 > 题目详情
19.若函数f(x)=$\left\{\begin{array}{l}x+1({x<0})\\ cosx({0≤x≤\frac{π}{2}})\end{array}$,则f(x)与x轴围成封闭图形的面积为$\frac{3}{2}$.

分析 射线画出函数图象,明确f(x)与x轴围成封闭图形,利用定积分表示后就是即可.

解答 解:函数f(x)=$\left\{\begin{array}{l}x+1({x<0})\\ cosx({0≤x≤\frac{π}{2}})\end{array}$,则f(x的)与x轴围成封闭图形如,其面积为:$\frac{1}{2}×1×1+{∫}_{0}^{\frac{π}{2}}cosxdx$=$\frac{1}{2}+sinx{|}_{0}^{\frac{π}{2}}$=$\frac{3}{2}$;
故答案为:$\frac{3}{2}$.π

点评 本题考查了封闭图形的面积;利用定积分图形的面积是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}$(t为参数),以原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ2=$\frac{12}{{3+{{sin}^2}θ}}$,直线l与曲线C交于A,B两点.
(1)求曲线C的直角坐标方程;
(2)求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)的定义域为{x|x∈R,且x≠0},满足f(x)+f(-x)=0,当x>0时,f(x)=1nx-x+1,则函数y=f(x)的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.复数z=1+4i(i为虚数单位),则|2z+$\overline z}$|=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某公司经过测算投资x百万元,投资项目A与产生的经济效益y之间满足:y=f(x)=-$\frac{1}{4}{x^2}$+2x+12,投资项目B产生的经济效益y之间满足:y=h(x)=-$\frac{1}{3}{x^2}$+4x+1.
(1)现公司共有1千万资金可供投资,应如何分配资金使得投资收益总额最大?
(2)投资边际效应函数F(x)=f(x+1)-f(x),当边际值小于0时,不建议投资,则应如何分配投资?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.数列{an}满足:a1=1,且对任意的n∈N*都有:an+1=an+n+1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=(  )
A.$\frac{2015}{2016}$B.$\frac{2015}{1008}$C.$\frac{2016}{2017}$D.$\frac{4032}{2017}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合M={x|x2-3x+2=0},N={x|x2-2x+a=0},若N⊆M,则实数a的取值范围为[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{y≥3x-6}\\{x+y≥2}\end{array}\right.$,则目标函数z=$lo{g}_{\sqrt{3}}$(2x+y)的最小值(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{log_a}({\frac{1}{x+1}})({-1<x<1})\\ f({2-x})-a+1({1<x<3})\end{array}\right.$,(a>0,a≠1),若x1≠x2,则f(x1)=f(x2)时,x1+x2与2的大小关系是(  )
A.恒小于2B.恒大于2C.恒等于2D.与a相关

查看答案和解析>>

同步练习册答案