精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
12
x2
+alnx,g(x)=(a+1)x(a≠-1),H(x)=f(x)-g(x).
(1)若函数f(x)、g(x)在区间[1,2]上都为单调函数且它们的单调性相同,求实数a的取值范围;
(2)α、β是函数H(x)的两个极值点,α<β,β∈(1,e](e=2.71828…).求证:对任意的x1、x2∈[α,β],不等式|H(x1)-H(x2)|<1成立.
分析:(1)f(x)=x+
a
x
g(x)=a+1
H(x)=
1
2
x2+alnx-(a+1)x
,(由f(x),g(x)在区间[1,2]上都为单调函数,且它们的单调性相同,知f(x)•g(x)=
x2+a
x
•(a+1)>0
,由(a+1)(a+x2)≥0,a≤-x2,(-x2min=-4,能导出实数a的取值范围.
(2)由H(x)=x+
a
x
-(a+1)=
x2-(a+1)x+a
x
=
(x-1)(x-a)
x
=0
,知x=1或x=a,由x2-(a+1)x+a=0有两个不相等的正根α,β,且α<β,β∈(1,e],知α=1,β=a∈(1,e],由此能得到不等式|H(x1)-H(x2)|<1对任意的x1,x2∈[α,β]成立.
解答:解:(1)f(x)=x+
a
x
g(x)=a+1

H(x)=
1
2
x2+alnx-(a+1)x

∵f(x),g(x)在区间[1,2]上都为单调函数,且它们的单调性相同,
f(x)•g(x)=
x2+a
x
•(a+1)>0

∵x∈[1,2],∴(a+1)(a+x2)≥0,
-x2≤-1,∴a≤-x2或a>-1(a≠-1),又(-x2min=-4,
∴a≤-4或a>-1.
(2)∵H(x)=x+
a
x
-(a+1)=
x2-(a+1)x+a
x
=
(x-1)(x-a)
x
=0
?x=1或x=a,
又∵x2-(a+1)x+a=0有两个不相等的正根α,β,且α<β,β∈(1,e],
∴α=1,β=a∈(1,e],∴当x∈[α,β]时,H′(x)≤0,
∴H(x)在[α,β]上单调单调递减,
∴H(x)max=H(1),H(x)min=H(β),
则对任意的x1,x2∈[α,β],
|H(x1)-H(x2)|≤H(1)-H(β)=[
1
2
-(a+1)]-[
1
2
a2+alna-a(a+1) ]

=
1
2
a2-alna-
1
2

设t(a)=
1
2
a2-alna-
1
2
,则t′(a)=a-1-lna,
∵当a∈(1,e]时,t(a)=1-
1
a
>0
,∴t′(a)在(1,e]单调递增,
∴t′(a)>t′(1)=0,∴t(a)也在(1,e]单调递增,
t(a)≤t(e)=
1
2
e2-e-
1
2
 =e(
e
2
-1) -
1
2
<3(
3
2
-1)-
1
2
=1

∴不等式|H(x1)-H(x2)|<1对任意的x1,x2∈[α,β]成立.
点评:本题考查导数在求函数单调性中的运用,难度较大,解题时要认真审题,仔细解答,注意公式的合理选用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
|x|
,g(x)=1+
x+|x|
2
,若f(x)>g(x),则实数x的取值范围是(  )
A、(-∞,-1)∪(0,1)
B、(-∞,-1)∪(0,
-1+
5
2
)
C、(-1,0)∪(
-1+
5
2
,+∞)
D、(-1,0)∪(0,
-1+
5
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1,x∈Q
0,x∉Q
,则f[f(π)]=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1-x
ax
+lnx(a>0)

(1)若函数f(x)在[1,+∞)上为增函数,求实数a的取值范围;
(2)当a=1时,求f(x)在[
1
2
,2
]上的最大值和最小值;
(3)当a=1时,求证对任意大于1的正整数n,lnn>
1
2
+
1
3
+
1
4
+
+
1
n
恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+cos2x-2sin2(x-
π
6
),其中x∈R,则下列结论中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1+logax(a>0,a≠1),满足f(9)=3,则f-1(log92)的值是(  )

查看答案和解析>>

同步练习册答案