精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=lnx.
(1)若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,求实数p的值;
(2)若函数g(x)=x-$\frac{m}{x}$-2f(x)(m∈R)有两个极值点,求实数m的取值范围.

分析 (1)求出f(x)的导数,求出切点的坐标,代入切线方程求出p的值即可;
(2)求出函数f(x)有两个极值点x1,x2,等价于方程x2-2x+m=0在(0,+∞),直接推出结果.

解答 解:(1)f(x)=lnx的定义域是(0,+∞),f′(x)=$\frac{1}{x}$,
若直线y=2x+p(p∈R)是函数y=f(x)图象的一条切线,
∴$\frac{1}{x}$=2,解得:x=$\frac{1}{2}$,y=f(x)=ln$\frac{1}{2}$=-ln2,
将($\frac{1}{2}$,-ln2)代入y=2x+p,得:p=y-2x=-ln2-1;
(2)①函数g(x)=x-$\frac{m}{x}$-2lnx的定义域为(0,+∞),f′(x)=$\frac{{x}^{2}-2x+m}{{x}^{2}}$,
令g′(x)=0,得x2-2x+m=0,其判别式△=4-4m,
当△≤0,即m≥1时,x2-2x+m≥0,g′(x)≥0,
此时,g(x)在(0,+∞)上单调递增,
函数g(x)无极值点;
②当△>0,即m<1时,方程x2-2x+a=0的两根为x1=1-$\sqrt{1-m}$,x2=1+$\sqrt{1-m}$>1,
若m≤0,则x1≤0,则x∈(0,x2)时,g′(x)<0,x∈(x2,+∞)时,g′(x)>0,
此时,g(x)在(0,x2)上单调递减,在(x2,+∞)上单调递增,
函数g(x)有1个极值点;
若m>0,则x1>0,则x∈(0,x1)时,g′(x)>0,
x∈(x1,x2)时,g′(x)<0,
x∈(x2,+∞)时,g′(x)>0,
此时,g(x)在(0,x1)上单调递增,在(x1,x2)上单调递减,在(x2,+∞)上单调递增,
函数g(x)有2个极值点;
综上,0<m<1.

点评 本题考查函数的导数的应用,函数的极值以及函数的单调性的应用,考查分析问题解决问题的能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知F1,F2是椭圆$\frac{{x}^{2}}{4}$+y2=1的两个焦点,P为椭圆上一动点,则使|PF1|•|PF2|取最大值的点P为(  )
A.(-2,0)B.(0,1)C.(2,0)D.(0,1)或(0,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求与直线2x-y+10=0平行且在y轴、x轴上截距之和为2的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知圆C的圆心为C(m,0),m<3,半径为$\sqrt{5}$,圆C与离心率$e>\frac{1}{2}$的椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的其中一个公共点为A(3,1),F1、F2分别是椭圆的左、右焦点.
(1)求圆C的标准方程;
(2)若点P的坐标为(4,4),试探究直线PF1与圆C能否相切,若能,求出椭圆E和直线PF1的方程;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数$f(x)=\frac{1}{3}a{x^3}+{x^2}(a>0)$.
(Ⅰ)求函数y=f(x)的极值;
(Ⅱ)若存在实数x0∈(-1,0),且${x_0}≠-\frac{1}{2}$,使得$f({x_0})=f(-\frac{1}{2})$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右焦点F2 的直线交椭圆于A,B 两点,F1为其左焦点.当直线AB⊥x轴时,△AF1B为正三角形,且其周长为$4\sqrt{3}$. 
(Ⅰ)求椭圆的方程;
(Ⅱ)设 C 为直线x=2上的一点,且满足 CF2⊥AB,若$\overrightarrow{OA}=\overrightarrow{BC}$(其中O为坐标原点),求四边形OACB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设函数$f(x)=2lnx-\frac{1}{2}m{x^2}-nx$,若x=2是f(x)的极大值点,则m的取值范围为(  )
A.$({-\frac{1}{2},+∞})$B.$({-\frac{1}{2},0})$C.(0,+∞)D.$({-∞,-\frac{1}{2}})∪({0,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,$BC=1,sinC=\sqrt{2}sinB$,若x=A是函数f(x)=sinx+cosx的一个极值点,则△ABC的面积为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数求导数,正确的个数是(  )
①(e2x)′=e2x
②[(x2+3)8]′=8(x2+3)•2x
③(ln2x)′=$\frac{2}{x}$;
④(a2x)′=2a2x-1
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案