精英家教网 > 高中数学 > 题目详情
20.函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4,x≤0}\\{2x-4+lnx,x>0}\end{array}\right.$的零点个数是2.

分析 根据函数零点的定义,直接解方程即可得到结论.

解答 解:当x≤0时,由f(x)=0得x2-4=0,解得x=-2或x=2(舍去),
当x>0时,由f(x)=2x-4+lnx单调递增,f(2)>0,f(1)<0,可知此时两个函数只有1个零点,
故函数f(x)的零点个数为2,
故答案为:2

点评 本题主要考查函数零点个数的判断,对于比较好求的函数,直接解方程f(x)=0即可,对于比较复杂的函数,由利用数形结合进行求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}中,a1=2,2an-an-1-1=0(n≥2).
(1)判断数列{an-1}是否为等比数列?并说明理由;
(2)求an

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知角α的终边上一个点P(4a,3a)(a≠0),求2sinα+cosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数,f(x)是定义在R上的奇函数,它的图象关于直线x=1对称,且f(x)=x(0<x≤1).若函数y=f(x)-$\frac{1}{x}$-a在区间[-10,10]上有10个零点(互不相同).则实数a的取值范围是$[-\frac{1}{10},\frac{1}{10}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某市在2 015年2月份的高三期末考试中对数学成绩数据统计显示,全市10000名学生的成绩服从正态分布N (120,25),现某校随机抽取了50名学生的数学成绩分析,结果这50名同学的成绩全部介于80分到140分之间现将结果按如下方式分为6组,第一组[85,95),第二组[95,105),…第六组[135,145],得到如图所示的频率分布直方图.
(I)试估计该校数学的平均成绩;
(Ⅱ)这50名学生中成绩在125分(含125分)以上的同学中任意抽取3人,该3人在全市前13名的人数记为X,求X的分布列和期望.
附:若 X~N(μ,σ2),则P(u-3σ<X<u+3σ)=0.9974.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线y=k(x+1)(k>0)与抛物线C:y2=4x相交于A,B两点,F为C的焦点,若|FA|=2|FB|,则k=$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知向量$\overrightarrow{p}$=(sinx,$\sqrt{3}$cosx),$\overrightarrow{q}$=(cosx,cosx),定义函数f(x)=$\overrightarrow{p}•\overrightarrow{q}$,在锐角△ABC中,角A,B,C所对的边长分别为a,b,c.
(1)若f(B)=$\sqrt{3}$,求角B的大小;
(2)在(1)的条件下,若S△ABC=$\sqrt{3}$,b=2,且sinAcosC+3cosAsinC=0,求a,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是定义在R上的偶函数且在[0,+∞)上递增,p:f($\frac{x}{x+1}$)<f(-$\frac{1}{2}$),q:|x-a|<1,若p是q的充分不必要条件,则实数a的取值范围为(  )
A.(0,$\frac{4}{3}$)B.(-∞,0)∪($\frac{4}{3}$,+∞)C.(-∞,0]∪[$\frac{4}{3}$,+∞)D.[0,$\frac{2}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={x|y=2x-1},B={y|y=x2+x+1},则A∩B=(  )
A.{(0,1),(1,3)}B.RC.(0,+∞)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

同步练习册答案