精英家教网 > 高中数学 > 题目详情
有下列命题:①函数y=cos(x+
π
2
)
是偶函数;②直线x=
π
8
是函数y=sin(2x+
π
4
)
图象的一条对称轴;③函数y=sin(x+
π
6
)
(-
π
2
π
3
)
上是单调增函数;④(
3
,0)
是函数y=tan(x+
π
3
)
图象的对称中心.其中正确命题的序号是
 
.(把所有正确的序号都填上)
分析:先利用诱导公式化简函数y=cos(x+
π
2
)
,再判断其奇偶性;然后利用y=sinx的对称轴是使函数值等于1时的x的值,其单调区间是【-
π
2
+2kπ,
π
2
+2kπ
,k∈N+】来判断②③,另外正切函数的对称中心是使函数值为0的x的值,可判断④.
解答:解:①y=cos(x+
π
2
)
=sin(-x)=-sinx,所以①为奇函数;②y=sinx的对称轴是x=
π
2
+kπ
,令2x+
π
4
=
π
2
+kπ
,x=
π
8
+
2
,当k=0时,x=
π
8
,所以②正确;③y=sin(x+
π
6
)
的递增区间为-
π
2
+2kπ
≤x+
π
6
π
2
+2kπ
,得-
3
+2kπ≤ x ≤
π
3
+ 2kπ
,(-
π
2
π
3
)在该区间范围内,所以③正确;④y=tan(x+
π
3
)
的对称中心为x+
π
3
=kπ
,当k=1时,x=
3
,所以④正确,故答案为②③④.
点评:判断三角函数的奇偶性,对称,单调区间等问题是本章的热点考点,解答这类问题的关键是关键是熟记正弦,余弦与正切函数的变换规律.如正弦函数y=sinx是奇函数,余弦函数y=cosx是偶函数,y=sinx的对称中心是使函数值等于0时的x的值等知识点,考查综合应用知识的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

关于函数f(x)=sin2x-cos2x有下列命题:
①函数y=f(x)的周期为π;
②直线x=
π
4
是y=f(x)的一条对称轴;
③点(
π
8
,0)
是y=f(x)的图象的一个对称中心;
④将y=f(x)的图象向左平移
π
4
个单位,可得到y=
2
sin2x
的图象.
其中真命题的序号是
①③
①③
.(把你认为真命题的序号都写上)

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg
x2+1|x|
(x≠0,x∈R)有下列命题:
①函数y=f(x)的图象关于y 轴对称;
②在区间(-∞,0)上,函数y=f(x)是减函数;
③在区间(1,+∞)上,函数f(x)是增函数.
其中正确命题序号为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①函数y=cos(x-
π
4
)cos(x+
π
4
)的图象中,相邻两个对称中心的距离为π;
②函数y=
x+3
x-1
的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实数根,则实数a=-1;
④已知命题p:对任意的x∈R,都有sinx≤1,则非p:存在x∈R,使得sinx>1.
其中所有真命题的序号是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=lg(|x|+1)(x∈R)有下列命题:
①函数y=f(x)的图象关于y轴对称;
②在区间(-∞,0)上,函数y=f(x)是增函数;
③函数f(x)的最小值为0.
其中正确命题序号为
①③
①③

查看答案和解析>>

科目:高中数学 来源: 题型:

关于函数f(x)=sin2x-cos2x有下列命题:
①函数y=f(x)的周期为π;                
②直线x=
π
4
是y=f(x)图象的一条对称轴;
点(
π
8
,0)
是y=f(x)图象的一个对称中心;
(-
π
8
8
)
是函数y=f(x)的一个单调递减区间.
其中真命题的序号是
①③
①③

查看答案和解析>>

同步练习册答案