【题目】某音乐院校举行“校园之星”评选活动,评委由本校全体学生组成,对
两位选手,随机调查了
个学生的评分,得到下面的茎叶图:
![]()
通过茎叶图比较
两位选手所得分数的平均值及分散程度(不要求计算出具体值,得出结论即可);
校方将会根据评分记过对参赛选手进行三向分流:
所得分数 | 低于 |
| 不低于 |
分流方向 | 淘汰出局 | 复赛待选 | 直接晋级 |
记事件
“
获得的分流等级高于
”,根据所给数据,以事件发生的频率作为相应事件发生的概率,求事件
发生的概率.
【答案】(1)详见解析(2)![]()
【解析】
(1)通过茎叶图可以看出,
得分数的平均值高于
得分数的平均值,
得分数比较集中,
得分数比较分散;
(2)记
表示事件:“
选手直接晋级”
表示事件:“
选手复赛待选”
表示事件:“
选手复赛待选”
表示事件:“
选手淘汰出局利用独立事件的概率乘法公式,即可求解.
(1)通过茎叶图可以看出,
选手所得分数的平均值高于
选手所得分数的平均值;
选手所得分数比较集中,
选手所得分数比较分散.
(2)记
表示事件:“
选手直接晋级”
表示事件:“
选手复赛待选”
表示事件:“
选手复赛待选”
表示事件:“
选手淘汰出局
则
与
独立,
与
独立,
与
互斥,
则
,
![]()
![]()
由所给数据得
,
,
,
发生的频率分别为
.
故
,
,
,
,
所以
.
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
在直角坐标系xOy中,设倾斜角为α的直线l:
(t为参数)与曲线C:
(θ为参数)相交于不同的两点A,B.
(Ⅰ)若α=
,求线段AB中点M的坐标;
(Ⅱ)若|PA|·|PB|=|OP|
,其中P(2,
),求直线l的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
是实数,函数
.
(Ⅰ)讨论函数
的单调区间;
(Ⅱ)设定义在
上的函数
在点
处的切线方程为
,当
时,若
在
内恒成立,则称点
为函数
的“平衡点”.当
时,试问函数
是否存在“平衡点”?若存在,请求出“平衡点”的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四名同学组成一个4
100米接力队,老师要安排他们四人的出场顺序,以下是他们四人的要求:甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒.老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求,据此我们可以断定在老师安排的出场顺序中跑第三棒的人是_________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知四边形BCDE为直角梯形,
,
,且
,A为BE的中点
将
沿AD折到
位置
如图
,连结PC,PB构成一个四棱锥
.
![]()
Ⅰ
求证
;
Ⅱ
若
平面ABCD.
求二面角
的大小;
在棱PC上存在点M,满足
,使得直线AM与平面PBC所成的角为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线
的参数方程为
(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,曲线
:
.
(Ⅰ)求曲线
的普通方程和
的直角坐标方程;
(Ⅱ)若
与
相交于
两点,设点
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为
,且过点
.点M(3,m)在双曲线上.
(1)求双曲线的方程;
(2)求证:
;
(3)求△F1MF2的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com