| A. | 4π | B. | 8π | C. | 12π | D. | 16π |
分析 由已知中S、A、B、C是球O表面上的点,SA⊥平面ABC,AB⊥BC,易S、A、B、C四点均为长宽高分别SA,AB,BC三边长的长方体的顶点,由长方体外接球的直径等于长方体对角线,可得球O的直径(半径),代入球的表面积公式即可得到答案.
解答 解:∵SA⊥平面ABC,AB⊥BC,
∴四面体S-ABC的外接球半径等于以长宽高分别SA,AB,BC三边长的长方体的外接球的半径,
∵SA=AB=2,BC=2$\sqrt{2}$,
∴2R=$\sqrt{4+4+8}$=4,
∴球O的表面积S=4•πR2=16π,
故选:D.
点评 本题考查的知识点是球内接多面体,球的表面积公式,其中根据已知条件求出球O的直径(半径),是解答本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{n}$ | B. | $\frac{2}{n}$ | C. | $\frac{1}{2n}$ | D. | $\frac{3}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com