分析 如图所示,当角α的终边在坐标轴上时sin2α+cos2α=1.当角α的终边落在四个象限时,利用三角形勾股定理有sin2α+cos2α=1,综合可得结论.
解答
证明:当角α的终边在坐标轴上时,正弦线(余弦线)变成一个点,
而余弦线(正弦线)的长等于r(r=1),
所以sin2α+cos2α=1.
当角α的终边落在四个象限时,设角α的终边与单位圆交于点P(x,y)时,过P作PM⊥x轴于点M(如图),
则|sinα|=|MP|,|cosα|=|OM|,利用三角形勾股定理有sin2α+cos2α=|MP|2+|OM|2=1,
综上有sin2α+cos2α=1.
点评 本题主要考查任意角的三角函数的定义,用单位圆中的三角函数线表示三角函数的值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4π | B. | 8π | C. | 12π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com