精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=ax+\frac{b}{x}$(其中a,b为常数)的图象经过(1,2),$({2\;,\;\;\frac{5}{2}})$两点.
(1)求函数f(x)的解析式;
(2)证明函数f(x)在(1,+∞)是增函数;
(3)若不等式$\frac{{{{25}^m}}}{3}-{5^m}≥f(x)$对任意$x∈[{\frac{1}{2}\;,\;\;3}]$恒成立,求实数m的取值范围.

分析 (1)把已知两点的坐标代入函数解析式,得到关于a,b的方程组,求解a,b即可得到函数f(x)的解析式;
(2)直接利用函数单调性的定义证明函数f(x)在(1,+∞)是增函数;
(3)由(Ⅱ)知,函数f(x)在[1,3]上为增函数,可证f(x)在$[{\frac{1}{2}\;,\;\;1})$上是减函数.求出f(x)在给定区间上的最大值,由$\frac{2{5}^{m}}{3}-{5}^{m}$大于等于f(x)在给定区间上的最大值得答案.

解答 (1)解:由题意得,$\left\{\begin{array}{l}a+b=2\;,\;\;\\ 2a+\frac{b}{2}=\frac{5}{2}\;.\;\end{array}\right.$解得$\left\{\begin{array}{l}a=1\;,\;\;\\ b=1\;.\;\end{array}\right.$
∴函数的解析式为$f(x)=x+\frac{1}{x}$.…(2分)
(2)证明:设x1,x2是(1,+∞)上的任意两个实数,且x1<x2,…(3分)
于是$f({x_2})-f({x_1})=({{x_2}+\frac{1}{x_2}})-({{x_1}+\frac{1}{x_1}})$=${x_2}-{x_1}+\frac{1}{x_2}-\frac{1}{x_1}={x_2}-{x_1}+\frac{{{x_1}-{x_2}}}{{{x_1}{x_2}}}=\frac{{({{x_2}-{x_1}})({x_1}{x_2}-1)}}{{{x_1}{x_2}}}$.…(4分)
∵x1,x2∈(1,+∞),
∴x1x2>0,x1x2-1>0.
∵x1<x2,∴x2-x1>0.
∴f(x2)-f(x1)>0.…(5分)
即f(x2)>f(x1).
∴函数f(x)在区间(1,+∞)内是增函数.…(6分)
(3)解:由(Ⅱ)知,函数f(x)在[1,3]上为增函数,
同理可证f(x)在$[{\frac{1}{2}\;,\;\;1})$上是减函数.…(7分)
∴函数$f{(x)_{max}}=max\left\{{f({\frac{1}{2}})\;,\;\;f(3)}\right\}=\frac{10}{3}$.
不等式$\frac{{{{25}^m}}}{3}-{5^m}≥f(x)$对任意$x∈[{\frac{1}{2}\;,\;\;3}]$恒成立,
等价于$\frac{{{{25}^m}}}{3}-{5^m}≥f{(x)_{max}}=\frac{10}{3}$.…(8分)
于是(5m2-3×5m-10≥0,
即(5m-5)(5m+2)≥0,
∵5m+2>0,∴5m-5≥0.
∴m≥1.
∴实数m的取值范围是[1,+∞).…(10分)

点评 本题考查函数恒成立问题,考查了函数解析式的求解及常用方法,训练了利用函数单调性的定义证明函数的单调性,考查数学转化思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{6}}}{3}$,以M(1,0)为圆心,椭圆的短半轴长为半径的圆与直线$x-y+\sqrt{2}-1=0$相切.
(1)求椭圆C的标准方程;
(2)已知点N(3,2),过点M任作直线l与椭圆C相交于A,B两点,设直线AN,BN的斜率分别为k1,k2,请问 k1+k2是否为定值?如果是求出该值,如果不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列四个命题中真命题是(  )
A.同垂直于一直线的两条直线互相平行
B.底面各边相等,侧面都是矩形的四棱柱是正四棱柱
C.过空间任一点与两条异面直线都垂直的直线有且只有一条
D.过球面上任意两点的大圆有且只有一个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=sin(ωx-$\frac{3π}{4}$)(ω>0)的最小值正周期为π
(1)求ω;
(2)若f($\frac{α}{2}$+$\frac{3π}{8}$)=$\frac{24}{25}$,且α∈(-$\frac{π}{2}$,$\frac{π}{2}$),求tanα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=x2-4x+5在区间[-1,m]上的最大值为10,最小值为1,则实数m的取值范围是(  )
A.[2,+∞)B.[2,4]C.[-1,5]D.[2,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆Г:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,F2与椭圆上点的连线的中最短线段的长为$\sqrt{2}$-1.
(1)求椭圆Г的标准方程;
(2)已知Г上存在一点P,使得直线PF1,PF2分别交椭圆Г于A,B,若$\overrightarrow{P{F}_{1}}$=2$\overrightarrow{{F}_{1}A}$,$\overrightarrow{P{F}_{2}}$=λ$\overrightarrow{{F}_{2}B}$(λ>0),求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f′(x),且有xf′(x)>x2+3f(x),则不等式8f(x+2014)+(x+2014)3f(-2)>0的解集为(  )
A.(-∞,-2016)B.(-2018,-2016)C.(-2018,0)D.(-∞,-2018)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=-x2-3,g(x)=2xlnx-ax且函数f(x)与g(x)在x=1处的切线平行.
(Ⅰ)求函数g(x)在(1,g(1))处的切线方程;
(Ⅱ)当x∈(0,+∞)时,g(x)-f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sin(ωx+φ)(0<ω<1,|φ|<π).若对任意x∈R,f(1)≤f(x)≤f(6),则(  )
A.f(2014)-f(2017)<0B.f(2014)-f(2017)=0C.f(2014)+f(2017)<0D.f(2014)+f(2017)=0

查看答案和解析>>

同步练习册答案