9£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨a£¾b£¾0£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{6}}}{3}$£¬ÒÔM£¨1£¬0£©ÎªÔ²ÐÄ£¬ÍÖÔ²µÄ¶Ì°ëÖ᳤Ϊ°ë¾¶µÄÔ²ÓëÖ±Ïß$x-y+\sqrt{2}-1=0$ÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªµãN£¨3£¬2£©£¬¹ýµãMÈÎ×÷Ö±ÏßlÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬ÉèÖ±ÏßAN£¬BNµÄбÂÊ·Ö±ðΪk1£¬k2£¬ÇëÎÊ k1+k2ÊÇ·ñΪ¶¨Öµ£¿Èç¹ûÊÇÇó³ö¸ÃÖµ£¬Èç¹û²»ÊÇ˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÀëÐÄÂʹØÏµ¼°µãµ½Ö±ÏߵľàÀ빫ʽÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©µ±Ð±Âʲ»´æÔÚʱ£¬ÇóµÃAºÍBµÄ×ø±ê£¬ÇóµÃk1£¬k2£¬¼´¿ÉÇóµÃk1+k2µÄÖµ£¬µ±Ð±Âʲ»´æÔÚʱ£¬ÉèÖ±Ïß l£ºy=k£¨x-1£©£¬´úÈëÍÖÔ²·½³Ì£¬ÓÉΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½¼´¿ÉÇóµÃk1+k2ÊÇ·ñΪ¶¨Öµ£®

½â´ð ½â£º£¨1£©ÍÖÔ²ÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{{\sqrt{6}}}{3}$£¬Ôòa2=$\frac{3}{2}$c2£¬
Ô²£¨x-1£©2+y2=b2ÓëÖ±Ïß$x-y+\sqrt{2}-1=0$ÏàÇУ¬
ÔòÔ²ÐÄ£¨1£¬0£©µ½Ö±Ïß$x-y+\sqrt{2}-1=0$µÄ¾àÀëb=d=$\frac{Ø­1-0+\sqrt{2}-1Ø­}{\sqrt{1+£¨-1£©^{2}}}$=1£¬
¼´b=1£¬a2=3£®
¡àÍÖÔ²CµÄ±ê×¼·½³Ì$\frac{{x}^{2}}{3}+{y}^{2}=1$£»
£¨2£©¢Ùµ±Ö±ÏßбÂʲ»´æÔÚʱ£¬ÓÉ $\left\{\begin{array}{l}{x=1}\\{\frac{{x}^{2}}{3}+{y}^{2}=1}\end{array}\right.$£¬½âµÃx=1£¬y=¡À$\frac{\sqrt{6}}{3}$£¬
²»·ÁÉè A£¨1£¬$\frac{\sqrt{6}}{3}$£©£¬B£¨1£¬-$\frac{\sqrt{6}}{3}$ £©£¬
ÓÉk1+k2=$\frac{\frac{\sqrt{6}}{3}-2}{1-3}$+$\frac{-\frac{\sqrt{6}}{3}-2}{1-3}$=2£¬
¢Úµ±Ö±ÏßµÄбÂÊ´æÔÚʱ£¬ÉèµãA£¨x1£¬y1£©£®B£¨x2£¬y2£©£¬ÉèÖ±Ïß l£ºy=k£¨x-1£©£¬
ÁªÁ¢ÍÖÔ²ÕûÀíµÃ£º£¨3k2+1£©x2-6k2x+3k2-3=0£¬
ÓÉΤ´ï¶¨Àí¿ÉÖª£ºx1+x2=$\frac{6{k}^{2}}{3{k}^{2}+1}$£¬x1•x2=$\frac{3{k}^{2}-3}{3{k}^{2}+1}$£¬
k1+k2=$\frac{2-{y}_{1}}{3-{x}_{1}}$+$\frac{2-{y}_{2}}{3-{x}_{2}}$=$\frac{[2-k£¨{x}_{1}-1£©]£¨3-{x}_{2}£©+[2-k£¨{x}_{2}-1£©]£¨3-{x}_{1}£©}{{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+9}$=$\frac{2k{x}_{1}{x}_{2}-£¨4k+2£©£¨{x}_{1}+{x}_{2}£©+6k+12}{{x}_{1}{x}_{2}-3£¨{x}_{1}+{x}_{2}£©+9}$£¬
=$\frac{2£¨12{k}^{2}+6£©}{12{k}^{2}+6}$=2£¬
¡àk1+k2ÊÇ·ñΪ¶¨Öµ2£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥¼¸ºÎÐÔÖÊ£¬¿¼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬µãµ½Ö±ÏߵľàÀ빫ʽ£¬Î¤´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½£¬¿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªlΪ˫ÇúÏßC£º$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾0£¬b£¾0£©µÄÒ»Ìõ½¥½üÏߣ¬lÓëÔ²£¨x-c£©2+y2=a2£¨ÆäÖÐc2=a2+b2£©ÏཻÓÚA£¬BÁ½µã£¬Èô|AB|=a£¬ÔòCÀëÐÄÂÊΪ$\frac{\sqrt{7}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªÊýÁÐ{an}£¬{bn}£¬Èôb1=0£¬an=$\frac{1}{n£¨n+1£©}$£¬µ±n¡Ý2ʱ£¬ÓÐbn=bn-1+an-1£¬Ôòb2017=$\frac{2016}{2017}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Èôtan$\frac{¦Ð}{12}$cos$\frac{5¦Ð}{12}$=sin$\frac{5¦Ð}{12}$-msin$\frac{¦Ð}{12}$£¬ÔòʵÊýmµÄֵΪ£¨¡¡¡¡£©
A£®2$\sqrt{3}$B£®$\sqrt{3}$C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª¸´ÊýzÓ루z+2£©2+5¾ùΪ´¿ÐéÊý£¬Ôò¸´Êýz=¡À3i£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¸ø³öÏÂÁÐÃüÌ⣺
¢ÙÈôÔ­ÃüÌâÎªÕæ£¬ÔòÕâ¸öÃüÌâµÄ·ñÃüÌâ£¬ÄæÃüÌâ£¬Äæ·ñÃüÌâÖÐÖÁÉÙÓÐÒ»¸öÎªÕæ£»
¢ÚÈôpÊÇq³ÉÁ¢µÄ³ä·ÖÌõ¼þ£¬ÔòqÊÇp³ÉÁ¢µÄ±ØÒªÌõ¼þ£»
¢ÛÈôpÊÇqµÄ³äÒªÌõ¼þ£¬Ôò¿É¼ÇΪp?q£»
¢ÜÃüÌâ¡°ÈôpÔòq¡±µÄ·ñÃüÌâÊÇ¡°ÈôpÔò©Vq¡±£®
ÆäÖÐÊÇÕæÃüÌâµÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢Ú¢ÛB£®¢Ú¢Û¢ÜC£®¢Ù¢Û¢ÜD£®¢Ú¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèaΪʵÊý£¬º¯Êýf£¨x£©=2x2+£¨x-a£©|x-a|£®
£¨1£©Èôa=3£¬Çóf£¨2£©µÄÖµ£»    
£¨2£©Çóf£¨x£©µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýy=£¨m2-m-1£©x${\;}^{{m}^{2}-2m-3}$ÊÇÃݺ¯ÊýÇÒÔÚ£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õ£¬ÔòʵÊýmµÄֵΪ2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖªº¯Êý$f£¨x£©=ax+\frac{b}{x}$£¨ÆäÖÐa£¬bΪ³£Êý£©µÄͼÏó¾­¹ý£¨1£¬2£©£¬$£¨{2\;£¬\;\;\frac{5}{2}}£©$Á½µã£®
£¨1£©Çóº¯Êýf£¨x£©µÄ½âÎöʽ£»
£¨2£©Ö¤Ã÷º¯Êýf£¨x£©ÔÚ£¨1£¬+¡Þ£©ÊÇÔöº¯Êý£»
£¨3£©Èô²»µÈʽ$\frac{{{{25}^m}}}{3}-{5^m}¡Ýf£¨x£©$¶ÔÈÎÒâ$x¡Ê[{\frac{1}{2}\;£¬\;\;3}]$ºã³ÉÁ¢£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸