分析 (Ⅰ)求出函数的导数,求出a的值,从而求出切线方程即可;
(Ⅱ)先把已知等式转化为a≤x+2lnx+$\frac{3}{x}$,设g(x)=x+2lnx+$\frac{3}{x}$,x∈(0,+∞),对函数进行求导,利用导函数的单调性求得函数的最小值,只要a小于或等于最小值即可.
解答 解:(Ⅰ)f′(x)=-2x,
故k=f′(1)=-2,
而g′(x)=2(lnx+1)-a,故g′(1)=2-a,
故2-a=-2,解得:a=4,
故g(1)=-a=-4,
故g(x)的切线方程是:y+4=-2(x-1),
即2x+y+2=0;
(Ⅱ)当x∈(0,+∞)时,g(x)-f(x)≥0恒成立,
等价于a≤x+2lnx+$\frac{3}{x}$,
令g(x)=x+2lnx+$\frac{3}{x}$,x∈(0,+∞),
g′(x)=1+$\frac{2}{x}$-$\frac{3}{{x}^{2}}$=$\frac{(x+3)(x-1)}{{x}^{2}}$,
当0<x<1时,g′(x)<0,g(x)单调减,
当x=1时,g′(x)=0,
当x>1时,g′(x)>0,g(x)单调增,
∴g(x)min=g(1)=4,
∴a≤4.
点评 本题主要考查了利用导函数求最值的问题.考查了学生对函数基础知识的理解和灵活运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{16}$ | B. | $\frac{π}{8}$ | C. | $\frac{π}{4}$ | D. | $\frac{3π}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 付款方式 | 分3期 | 分6期 | 分9期 | 分12期 |
| 频数 | 20 | 20 | a | b |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0≥0且x0∈R,${2^{x_0}}>{x_0}^2$ | B. | ?x≥0且x∈R,2x≤x2 | ||
| C. | ?x0≥0且x0∈R,${2^{x_0}}≤{x_0}^2$ | D. | ?x0<0且x0∈R,${2^{x_0}}≤{x_0}^2$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com