精英家教网 > 高中数学 > 题目详情
(2012•烟台一模)设函数f(x)是定义在R上的奇函数,且对任意x∈R都有f(x)=f(x+4),当 x∈(-2,0)时,f(x)=2x,则f(2012)-f(2011)的值为(  )
分析:由f(x)=f(x+4),可得f(x)是以4为周期的函数,又f(x)是定义在R上的奇函数,故f(0)=0,利用函数的周期性与奇偶性即可求得答案.
解答:解:∵f(x)是定义在R上的奇函数,
∴f(0)=0,
又 x∈(-2,0)时,f(x)=2x
∴f(-1)=2-1=
1
2

又f(x)=f(x+4),
∴f(x)是以4为周期的函数,
∴f(2012)=f(4×503)=f(0)=0,
f(2011)=f(4×503-1)=f(-1)=
1
2

∴f(2012)-f(2011)=0-
1
2
=-
1
2

故选A.
点评:本题考查函数的周期性与奇偶性,掌握函数的周期性与奇偶性是解决问题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•烟台一模)函数y=
ln|x|
x
的图象大致是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)定义在R上的函数f(x)=ax3+bx2+cx+3同时满足以下条件:
①f(x)在(0,1)上是减函数,在(1,+∞)上是增函数; 
②f′(x)是偶函数;
③f(x)在x=0处的切线与直线y=x+2垂直.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)设g(x)=4lnx-m,若存在x∈[1,e],使g(x)<f′(x),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)若变量x,y满足约束条件
x≥1
y≥x
3x+2y≤15
则w=log3(2x+y)的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知命题p:“a=1是x>0,x+
a
x
≥2的充分必要条件”,命题q:“存在x0∈R,x02+x0-2>0”,则下列命题正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)已知f(x)是定义在R上的奇函数,当x≥0时f(x)=3x+m(m为常数),则f(-log35)的值为(  )

查看答案和解析>>

同步练习册答案