精英家教网 > 高中数学 > 题目详情
12.如图,矩形ABCD所在的平面和平面ABEF互相垂直,等腰梯形ABEF中,AB∥EF,AB=2,AD=AF=1,∠BAF=60°,O,P分别为AB,CB的中点,M为底面△OBF的重心.
(Ⅰ)求证:PM∥平面AFC;
(Ⅱ)求直线AC与平面CEF所成角的正弦值.

分析 (I)连结OM并延长交BF于H,连结OP,PH.则由中位线定理得出OP∥AC,PH∥CF,故而平面OPH∥平面AFC,于是有PM∥平面AFC;
(II)取CD的中点G,EF的中点N,连接OG,ON.则ON,OB,OG两两垂直,以O为原点建立坐标系,求出$\overrightarrow{AC}$和平面CEF的法向量$\overrightarrow{n}$,则直线AC与平面CEF所成角的正弦值为|cos<$\overrightarrow{AC},\overrightarrow{n}$>|.

解答 解:(Ⅰ)连结OM并延长交BF于H,连结OP,PH.
∵M为△OBF的重心,∴H为BF的中点,又P为BC的中点,O为AB的中心,
∴PH∥CF,OP∥AC,
又∵CF?平面AFC,AC?平面AFC,OP∩PH=P,OP?平面OPH,PH?平面OPH,OP∩PH=P,
∴平面OPH∥平面AFC,又∵PM?平面OPH,
∴PM∥AFC.
(Ⅱ)取CD的中点G,EF的中点N,连接OG,ON.
∵四边形ABCD是矩形,四边形ABEF是等腰梯形,平面ABCD⊥平面ABEF,
∴ON,OB,OG两两垂直.
以O为原点,以ON,OB,OG为坐标轴建立空间直角坐标系O-xyz,如图所示:
则A(0,-1,0),C(0,1,1),E($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$,0),F($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,0).
∴$\overrightarrow{AC}$=(0,2,1),$\overrightarrow{FE}$=(0,1,0),$\overrightarrow{FC}$=(-$\frac{\sqrt{3}}{2}$,$\frac{3}{2}$,1).
设平面CEF的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FE}=0}\\{\overrightarrow{n}•\overrightarrow{FC}=0}\end{array}\right.$.
∴$\left\{\begin{array}{l}{y=0}\\{-\frac{\sqrt{3}}{2}x+\frac{3}{2}y+z=0}\end{array}\right.$.令x=2则$\overrightarrow{n}$=(2,0,$\sqrt{3}$).
∴cos<$\overrightarrow{AC},\overrightarrow{n}$>=$\frac{\overrightarrow{AC}•\overrightarrow{n}}{|\overrightarrow{AC}||\overrightarrow{n}|}$=$\frac{\sqrt{3}}{\sqrt{5}•\sqrt{7}}$=$\frac{\sqrt{105}}{35}$.
∴直线AC与平面CEF所成角的正弦值为$\frac{\sqrt{105}}{35}$.

点评 本题考查了线面平行的判定,空间向量的应用与线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=2-x-|lnx|的两个零点分别为a和b,下列成立的是(  )
A.0<ab<1B.ab=1C.0<ab<eD.ab>e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设数列{an}和{bn}的项数均为m,则将数列{an}和{bn}的距离定义为$\sum_{i=1}^{n}$|ai-bi|.
(1)给出数列1,3,5,6和数列2,3,10,7的距离;
(2)设A为满足递推关系an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$的所有数列{an}的集合,{bn}和{cn}为A中的两个元素,且项数均为m,若b1=2,c1=3,{bn}和{cn}的距离小于2016,求m的最大值;
(3)记S是所有7项数列{an|1≤n≤7,an=0或1}的集合,T⊆S,且T中任何两个元素的距离大于或等于3,证明:T中的元素个数小于或等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C对边分别是a,b,c,且满足$(2c-b)cosA=asin(\frac{π}{2}-B)$.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,且△ABC的面积为$\sqrt{3}$;求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知菱形ABCD,AB=2,∠BAD=$\frac{π}{3}$,半圆O所在平面垂直于平面ABCD,点P在半圆弧上.(不同于B,C).
(1)若PA与平面ABCD所成角的正弦值为$\frac{{\sqrt{2}}}{4}$,求出点P的位置;
(2)是否存在点P,使得PC⊥BD,若存在,求出点P的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,角A、B、C所对的边分别为a,b,c,已知2c-a=$\frac{bcosA}{cosB}$,b=$\sqrt{3}$
(1)求角B;
(2)求c+2a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,a,b,c分别是△ABC的角A,B,C的对边,且b=2,a=1,sin$\frac{C}{2}=\frac{{\sqrt{2}}}{4}$.
(1)求c;
(2)求sinA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在直三棱柱ABC-A1B1C1中,AB=2,AC=AA1=4,∠ABC=90°.
(1)求三棱柱ABC-A1B1C1的表面积S;
(2)求异面直线A1B与AC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.($\frac{1}{{\sqrt{x}}}$+x)2n(n∈N*)的展开式中,只有第5项的系数最大,则其x2项的系数为70.

查看答案和解析>>

同步练习册答案