分析 (1)由已知求出BC=2$\sqrt{3}$,${S}_{△ABC}=\frac{1}{2}×AB×BC$=2$\sqrt{3}$,由此能求出三棱柱ABC-A1B1C1的表面积.
(2)连结BC1,由AC∥A1C1,得∠BA1C1是异面直线A1B与AC所成的角(或其补角),由此利用余弦定理能求出异面直线A1B与AC所成角的余弦值.
解答
解:(1)在△ABC中,
∵AB=2,AC=4,∠ABC=90°,
∴BC=2$\sqrt{3}$,${S}_{△ABC}=\frac{1}{2}×AB×BC$=2$\sqrt{3}$,
∴三棱柱ABC-A1B1C1的表面积S=2S△ABC+S侧=4$\sqrt{3}$+(2+2$\sqrt{3}$+4)×4=24+12$\sqrt{3}$.
(2)连结BC1,∵AC∥A1C1,
∴∠BA1C1是异面直线A1B与AC所成的角(或其补角),
在△A1BC1中,${A}_{1}B=2\sqrt{5}$,BC1=2$\sqrt{7}$,A1C1=4,
由余弦定理,得cos∠BA1C1=$\frac{(2\sqrt{5})^{2}+{4}^{2}-(2\sqrt{7})^{2}}{2×2\sqrt{5}×4}$=$\frac{\sqrt{5}}{10}$.
∴异面直线A1B与AC所成角的余弦值为$\frac{\sqrt{5}}{10}$.
点评 本题考查三棱柱的表面积的求法,考查异面直线所成角的余弦值的求法,是中档题,注意余弦定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (a+c,b+d) | B. | (a+c,bd) | C. | (ac,b+d) | D. | (ac,bd) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com