精英家教网 > 高中数学 > 题目详情
11.化简$\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BD}-\overrightarrow{CD}$=(  )
A.0B.$\overrightarrow{BC}$C.$\overrightarrow{DA}$D.$\overrightarrow 0$

分析 利用向量三角形法则即可得出.

解答 解:$\overrightarrow{AB}-\overrightarrow{AC}+\overrightarrow{BD}-\overrightarrow{CD}$=$\overrightarrow{CB}$+$\overrightarrow{BC}$=$\overrightarrow{0}$.
故选:D.

点评 本题考查了向量三角形法则,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.有下列四个命题:
(1)若α、β均为第一象限角,且α>β,则sin α>sin β;
(2)若函数y=2cos(ax-$\frac{π}{3}$)的最小正周期是4π,则a=$\frac{1}{2}$;
(3)函数y=$\frac{sin2x-sinx}{sinx-1}$是奇函数;
(4)函数y=sin(x-$\frac{π}{2}$)在[0,π]上是增函数.
(5)函数f(x)=sin2x+$\sqrt{3}$sin xcos x在区间[$\frac{π}{4}$,$\frac{π}{2}$]上的最大值是$\frac{3}{2}$.
其中正确命题的序号为(4)(5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知(2,0)是双曲线${x^2}-\frac{y^2}{b^2}=1$的一个焦点,则b=±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在(tanx+cotx)10的二项展开式中,tan2x的系数为210(用数值作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2),$\overrightarrow{c}$=(3,4).若λ为实数,($\overrightarrow{a}$+λ$\overrightarrow{b}$)∥$\overrightarrow{c}$,求λ的值.
(2)已知非零向量$\overrightarrow{{e}_{1}}$和$\overrightarrow{{e}_{2}}$不共线,欲使向量k$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$和$\overrightarrow{{e}_{1}}$+k$\overrightarrow{{e}_{2}}$共线,试确定实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知函数y=ax+b(b>0)是定义在R上的单调递增函数,图象经过点P(1,3),则$\frac{4}{a-1}+\frac{1}{b}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知复数z满足($\sqrt{3}$+3i)z=$\sqrt{3}$i,则z=(  )
A.$\frac{{\sqrt{3}}}{4}+\frac{1}{4}i$B.$\frac{1}{4}+\frac{{\sqrt{3}}}{4}i$C.$\frac{{\sqrt{3}}}{4}-\frac{1}{4}i$D.$\frac{1}{4}-\frac{{\sqrt{3}}}{4}i$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列-3,7,-11,15…,则下列选项能表示数列的一个通项公式的是(  )
A.an=4n-7B.an=(-1)n(4n+1)C.an=(-1)n•(4n-1)D.an=(-1)n+1•(4n-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且$\frac{cosA}{cosB+cosC}$=$\frac{a}{b+c}$,则$\sqrt{3}$cosC-2sinB的最小值为-1.

查看答案和解析>>

同步练习册答案