精英家教网 > 高中数学 > 题目详情
1.已知点A(4,0),抛物线C:y2=2px(0<p<4)的焦点为F,点P在C上,△PFA为正三角形,则p=$\frac{8}{5}$.

分析 根据抛物线的焦点,结合等边三角形的性质,运用中点坐标公式,求出P的坐标,代入抛物线的方程,解方程可得p的值.

解答 解:抛物线C:y2=2px(0<p<4)的焦点为F($\frac{p}{2}$,0),
可得|AF|=4-$\frac{p}{2}$,
由△PFA为等边三角形,可得P($\frac{1}{2}$(4+$\frac{p}{2}$),$\frac{\sqrt{3}}{2}$(4+$\frac{p}{2}$)),
代入抛物线的方程,可得$\frac{3}{4}$(4+$\frac{p}{2}$)2=2p•$\frac{1}{2}$(4+$\frac{p}{2}$),
化为5p2+112p-192=0,
解得p=$\frac{8}{5}$或-24(舍去),
故答案为:$\frac{8}{5}$.

点评 本题考查了抛物线的方程的应用,等边三角形的性质,考查运算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知定义在R上的函数f(x)=$\frac{b-{2}^{x}}{{2}^{x}+a}$是奇函数.
(1)求a,b的值,并判断函数f(x)在定义域中的单调性(不用证明);
(2)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,Sn=2an-1,数列{bn}为等差数列,且 b1=a1,b6=a5
(1)求数列{an}与{bn}的通项公式;
(2)若Cn=anbn,求数列{cn}的前n项 和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=2x2+bx+c,不等式f(x)<0的解集是(0,5),若对于任意x∈[2,4],不等式f(x)+t≤2恒成立,则t的取值范围为(-∞,10].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设a、b是两条不同的直线,α、β是两个不同的平面,则下面四个命题中不正确的是(  )
A.若a⊥b,a⊥α,b?α,则b∥αB.若a⊥b,a⊥α,b⊥β,则α⊥β
C.若a∥α,α⊥β,则α⊥βD.若a⊥β,α⊥β,则a∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某单位有8名员工,其中有5人曾经参加过技能培训,另外3人没有参加过任何培训,现要从8名员工中任选3人参加一种新的技能培训.
(Ⅰ)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何培训的员工数ξ是一个随机变量,求ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=|x2-2ax+b|(x∈R),给出下列命题:
①若a2-b≤0,则f(x)在区间[a,+∞)上是增函数;
②?a∈R,使f(x)为偶函数;
③若f(0)=f(2),则f(x)的图象关于x=1对称;
④若a2-b-2>0,则函数h(x)=f(x)-2有2个零点.
其中正确命题的序号为①②.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的奇函数f(x)对任意x1,x2(x1≠x2)都有(x1-x2)[f(x1)-f(x2)]<0,若正实数a使得不等式f(a2ea-a2)+f(ba3)<0恒成立,则b的取值范围是(  )
A.[-1,+∞)B.[-e,+∞)C.[-1,e]D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知x∈[-1,0],θ∈[0,2π),二元函数$f(x,θ)=\frac{1+cosθ+x}{1+sinθ-x}$取最小值时,x=x0,θ=θ0则(  )
A.4x00=0B.4x00<0C.4x00>0D.以上均有可能.

查看答案和解析>>

同步练习册答案