精英家教网 > 高中数学 > 题目详情
6.某单位有8名员工,其中有5人曾经参加过技能培训,另外3人没有参加过任何培训,现要从8名员工中任选3人参加一种新的技能培训.
(Ⅰ)求恰好选到1名曾经参加过技能培训的员工的概率;
(Ⅱ)这次培训结束后,仍然没有参加过任何培训的员工数ξ是一个随机变量,求ξ的分布列和数学期望Eξ.

分析 (Ⅰ)根据互斥事件的概率公式计算即可;
(Ⅱ)根据题意知ξ的可能取值,计算对应的概率值,写出ξ的分布列,计算数学期望值.

解答 解:(Ⅰ)恰好选到1名曾经参加过技能培训的员工的概率为
$P=\frac{C_5^1C_3^2}{C_8^3}=\frac{15}{56}$;
(Ⅱ)根据题意,ξ的可能取值为0,1,2,3;
则P(ξ=0)=$\frac{{C}_{3}^{3}}{{C}_{8}^{3}}$=$\frac{1}{56}$,
P(ξ=1)=$\frac{{C}_{5}^{1}{•C}_{3}^{2}}{{C}_{8}^{3}}$=$\frac{15}{56}$,
P(ξ=2)=$\frac{{C}_{5}^{2}{•C}_{3}^{1}}{{C}_{8}^{3}}$=$\frac{30}{56}$,
P(ξ=3)=$\frac{{C}_{5}^{3}}{{C}_{8}^{3}}$=$\frac{10}{56}$;
所以ξ的分布列为:

ξ0123
P$\frac{1}{56}$$\frac{15}{56}$$\frac{30}{56}$$\frac{10}{56}$
数学期望为Eξ=0×$\frac{1}{56}$+1×$\frac{15}{56}$+2×$\frac{30}{56}$+3×$\frac{10}{56}$=$\frac{105}{56}$.

点评 本题考查了古典概型的概率计算以及离散型随机变量的分布列和数学期望问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=cos($\frac{π}{2}$-x)+$\sqrt{3}$sin($\frac{π}{2}$+x)(x∈R).
(1)求函数y=f(x)的最大值,并指出此时x的值;
(2)若α∈(-$\frac{π}{2}$,$\frac{π}{2}$)且f(α)=1,求f(2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\frac{ln(2-x)}{\sqrt{x-1}}$的定义域为A,不等式(x-1)2<logax在x∈A时恒成立,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,D为BC边上一点,$\overrightarrow{BD}$=5$\overrightarrow{DC}$,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$.
(1)试用$\overrightarrow{a}$、$\overrightarrow{b}$表示$\overrightarrow{BD}$;
(2)若|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求$\overrightarrow{AC}$•$\overrightarrow{BD}$及|3$\overrightarrow{a}$-$\overrightarrow{b}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(4,0),抛物线C:y2=2px(0<p<4)的焦点为F,点P在C上,△PFA为正三角形,则p=$\frac{8}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=a•ex-x-1有两个不同零点,则实数a的取值范围是(  )
A.(0,1)B.(1,+∞)C.(-∞,1)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的最值及取得最值时的x的值.
(1)y=sinx,x∈[-$\frac{π}{4}$,$\frac{3π}{4}$],当x=-$\frac{π}{4}$时,ymin=-$\frac{\sqrt{2}}{2}$;当x=$\frac{π}{2}$时,ymax=1;
(2)y=2sin($\frac{1}{2}$x-$\frac{π}{4}$),x∈[0,2π];
(3)y=cos2x+$\sqrt{3}$sinx+$\frac{5}{4}$,x∈R.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知条件$p:{2^x}>\frac{1}{2}$,条件$q:\frac{x-3}{x-1}<0$,则p是q的(  )
A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=|x-1|+|2x+1|.
(1)求不等式f(x)≥3的解集;
(2)求函数g(x)=f(x)+|x-1|的最小值.

查看答案和解析>>

同步练习册答案