精英家教网 > 高中数学 > 题目详情
18.“k=1”是“直线y=x+k与圆x2+y2=1相交”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 由k=1时直线与圆相交,判断充分性成立;由直线与圆相交时求出k的取值范围,判断必要性不成立;可得结论.

解答 解:k=1时,直线为x-y+1=0,圆x2+y2=1的圆心O到直线的距离为d=$\frac{1}{\sqrt{2}}$<1,
直线与圆相交,充分性成立;
直线y=x+k与圆x2+y2=1相交时,圆心到直线的距离d=$\frac{|k|}{\sqrt{2}}$<1,
解得k∈(-$\sqrt{2}$,$\sqrt{2}$),必要性不成立;
所以“k=1”是“直线y=x+k与圆x2+y2=1相交”的充分不必要条件.
故选:A.

点评 本题考查了直线与圆的位置关系以及充分与必要条件的判断问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.长方体ABCD-A1B1C1D1中,AB=AA1=2,AD=1,则异面直线BC1与AC所成角的余弦值为(  )
A.$\frac{{\sqrt{10}}}{10}$B.$\frac{1}{5}$C.$\frac{{\sqrt{10}}}{5}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知数列{an}满足:a1=$\frac{3}{8}$,an+2-an≤3n,an+6-an≥91•3n,则a2015=(  )
A.$\frac{{3}^{2015}}{2}$+$\frac{3}{2}$B.$\frac{{3}^{2015}}{8}$C.$\frac{{3}^{2015}}{8}$+$\frac{3}{2}$D.$\frac{{3}^{2015}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:AE⊥平面PDC;
(3)(限理科生做,文科生不做)求二面角B-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知抛物线y2=-6x的焦点为F,点M,N在抛物线上,且满足$\overrightarrow{FM}=k\overrightarrow{FN}(k≠0)$,则|MN|的最小值6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在棱长为1的正方体ABCD-A1B1C1D1中,点E是棱AB上的动点.
(Ⅰ)求证:DA1⊥ED1
(Ⅱ)若E为AB中点时,求二面角D1-EC-D的余弦值;
(Ⅲ)写出点E到直线D1C距离的最大值及此时点E的位置(结论不要求证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x3-x+2在下列区间内一定存在零点的是(  )
A.(1,2)B.(0,1)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,离心率为$\frac{\sqrt{2}}{2}$,过点F且与x轴垂直的直线被椭圆截得的线段长为$\sqrt{2}$
(Ⅰ)求椭圆的方程;
(Ⅱ)过点P(0,2)的直线l与椭圆交于不同的两点A,B,当△OAB面积最大值时,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$与椭圆$\frac{x^2}{a^2}+\frac{y^2}{16}=1$有共同的焦点,且a>0,则a的值为(  )
A.5B.$\sqrt{7}$C.$\sqrt{15}$D.$\sqrt{17}$

查看答案和解析>>

同步练习册答案