精英家教网 > 高中数学 > 题目详情
6.在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.
(1)证明:CD⊥AE;
(2)证明:AE⊥平面PDC;
(3)(限理科生做,文科生不做)求二面角B-PC-D的余弦值.

分析 (1)推导出PA⊥CD,从而CD⊥面PAC,由此能证明CD⊥AE.
(2)推导出PC⊥AE,CD⊥AE,由此能证明AE⊥面PDC.
(3)由题可知PA,AB,AD两两垂直,建立空间直角坐标系,利用向量法能求出二面角B-PC-D的余弦值.

解答 证明:(1)∵在四棱锥P-ABCD中,PA⊥底面ABCD,∴PA⊥CD.
又∵AC⊥CD,∴CD⊥面PAC,
∵AE?面PAC,∴CD⊥AE.…(4分)
(2)∵AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴PA=AC,
又E是PC的中点,∴PC⊥AE,
又由(1)可知CD⊥AE,
∵CD∩PC=C,∴AE⊥面PDC.…(8分)
解:(3)由题可知 PA,AB,AD两两垂直,如图建立空间直角坐标系,
设AB=2,则$B(2,0,0),C(1,\sqrt{3},0),P(0,0,2)$,$D(0,\frac{4}{{\sqrt{3}}},0)$.
设面PBC的一个法向量为$\overrightarrow m=(x,y,z)$,
∵$\overrightarrow{PB}=(2,0,-2)$,$\overrightarrow{BC}=(-1,\sqrt{3,}0)$,
∴$\left\{{\begin{array}{l}{\overrightarrow{PB}•\overrightarrow m=0}\\{\overrightarrow{BC}•\overrightarrow m=0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{2x-2z=0}\\{-x+\sqrt{3}y=0}\end{array}}\right.$,
取$y=\sqrt{3}$,则x=z=3,即$\overrightarrow m=(3,\sqrt{3},3)$,
设面PDC的一个法向量为$\overrightarrow n=(x,y,z)$,
∵$\overrightarrow{PC}=(1,\sqrt{3},-2)$,$\overrightarrow{PD}=(0,\frac{4}{{\sqrt{3}}},-2)$,
∴$\left\{{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow n=0}\\{\overrightarrow{PD}•\overrightarrow n=0}\end{array}}\right.$,即$\left\{{\begin{array}{l}{x+\sqrt{3}y-2z=0}\\{\frac{4}{{\sqrt{3}}}y-2z=0}\end{array}}\right.$,
取$y=\sqrt{3}$则x=1,z=2,即$\overrightarrow n=(1,\sqrt{3},2)$,
$cos<\overrightarrow{m},\overrightarrow{n}>=\frac{{\overrightarrow{m}•\overrightarrow{n}}}{{|\overrightarrow{m}||\overrightarrow{n}|}}=\frac{3+3+6}{{\sqrt{21}\sqrt{8}}}=\frac{{\sqrt{42}}}{7}$,
由图可知二面角B-PC-D的余弦值为$-\frac{{\sqrt{42}}}{7}$.…(12分)

点评 本题考查异面直线垂直和线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.对于R上可导的任意函数f(x),若满足f(x)=f(2-x),且(x-1)f′(x)≥0,则必有(  )
A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)≥2f(1)D.f(0)+f(2)>2f(1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=sinx-\frac{1}{2}x(x∈(-π,π)$的极大值点为(  )
A.$(\frac{π}{3},\frac{{\sqrt{3}}}{2}-\frac{π}{6})$B.$(-\frac{π}{3},\frac{π}{6}-\frac{{\sqrt{3}}}{2})$C.$x=\frac{π}{3}$D.$x=-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x(ax+b)-lnx(a≥0,b∈R).
(1)求f(x)的单调区间;
(2)若b=a-2,且不存在x0∈(0,+∞),使得f(x0)≤0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xex-5.
(1)试求函数f(x)的单调区间及最值
(2)设函数g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四个实数根,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下面几种推理是合情推理的是(  )
①由圆的性质类比出球的有关性质;
②由直角三角形、等腰三角形、等边三角形内角和是180°归纳出所有三角形的内角和都是180°;
③三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n边形内角和是(n-2)•180°;
④所有自然数都是整数,4是自然数,所以4是整数.
A.①④B.②③C.①②③D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“k=1”是“直线y=x+k与圆x2+y2=1相交”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=aInx+\frac{1}{x}(a∈R)$
(1)当a=2时,求函数y=f(x)的极值;
(2)如果函数g(x)=f(x)-2x在(0,+∞)上单调递减,求a的取值范围;
(3)当a>0时,讨论函数y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知F1,F2分别是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,以原点O为圆心,OF1为半径的圆与椭圆在y轴左侧交于A,B两点,若△F2AB是等边三角形,则椭圆的离心率等于(  )
A.$\sqrt{3}$-1或$\sqrt{3}$+1B.$\sqrt{3}$-1C.$\sqrt{3}$+1D.2-$\sqrt{3}$

查看答案和解析>>

同步练习册答案