精英家教网 > 高中数学 > 题目详情
10.函数f(x)=x3-x+2在下列区间内一定存在零点的是(  )
A.(1,2)B.(0,1)C.(-2,-1)D.(-1,0)

分析 根据函数零点的判断条件,求出函数在区间端点处的符号相反即可得到结论.

解答 解:f(-2)=-8+2+2=-4<0,f(-1)=-1+1+2=2>0,
则函数f(x)在(-2,-1)上存在零点,
故选:C

点评 本题主要考查函数零点区间的判断,根据函数零点存在判断条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.关于函数f(x)=$\sqrt{3}$cos(2x+$\frac{π}{6}$),x∈R,下列结论中正确的个数是(  )
①若f(x1)=f(x2),则x1-x2必是π的整数倍;
②函数f(x)的图象关于直线x=$\frac{5π}{12}$对称;
③函数f(x)在区间[0,$\frac{π}{2}$]上的值域为[-$\frac{3}{2},\frac{3}{2}$];
④函数f(x)的解析式可写为f(x)=$\sqrt{3}sin(2x+\frac{2π}{3})$.
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xex-5.
(1)试求函数f(x)的单调区间及最值
(2)设函数g(x)=|f(x-3)+5|,若方程[g(x)]2+tg(x)+1=0(t∈R)有四个实数根,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.“k=1”是“直线y=x+k与圆x2+y2=1相交”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知三棱锥A-BCD,E、F、G、H分别是AB、BC、CD、DA的中点,若AC=BD,则四边形EFGH为(  )
A.梯形B.矩形C.菱形D.正方形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=aInx+\frac{1}{x}(a∈R)$
(1)当a=2时,求函数y=f(x)的极值;
(2)如果函数g(x)=f(x)-2x在(0,+∞)上单调递减,求a的取值范围;
(3)当a>0时,讨论函数y=f(x)零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{6}}}{3}$,点(1,0)与椭圆短轴的两个端点的连线互相垂直.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设椭圆C与直线y=kx+m相交于不同的两点M,N,点D(0,-1),当|DM|=|DN|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值与最小值之和为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已函数f(x)=|x+1|+|x-3|.
(1)作出函数y=f(x)的图象;
(2)若不等式f(x)≤ax的解集非空,求a的取值范围.

查看答案和解析>>

同步练习册答案