分析 函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$=1+$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,令g(x)=$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值为g(x)max+1,最小值为g(x)min+1,
函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值与最小值之和为g(x)max+1+g(x)min+1.
解答 解,设函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$=1+$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,
令g(x)=$\frac{2x}{{x}^{2}+1}+\frac{sinx}{{x}^{2}+1}$,g(x)是R上的奇函数,其图象关于原点对称,
g(x)max+g(x)min=0
函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值为g(x)max+1,最小值为g(x)min+1,
∴函数f(x)=$\frac{(x+1)^{2}+sinx}{{x}^{2}+1}$在区间[-2015,2015]上的最大值与最小值之和为
g(x)max+1+g(x)min+1=2,
故答案为:2.
点评 本题考查了函数的奇偶性及最值,恰当运用奇函数的性质是关键,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{3}^{2015}}{2}$+$\frac{3}{2}$ | B. | $\frac{{3}^{2015}}{8}$ | C. | $\frac{{3}^{2015}}{8}$+$\frac{3}{2}$ | D. | $\frac{{3}^{2015}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\sqrt{7}$ | C. | $\sqrt{15}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com