精英家教网 > 高中数学 > 题目详情
20.已函数f(x)=|x+1|+|x-3|.
(1)作出函数y=f(x)的图象;
(2)若不等式f(x)≤ax的解集非空,求a的取值范围.

分析 (1)根据绝对值不等式的性质表示为分段函数形式进行作图即可.
(2)利用函数f(x)的图象,结合直线斜率的关系进行求解即可.

解答 解:(1)f(x)=|x+1|+|x-3|=$\left\{\begin{array}{l}{2x-2,}&{x≥3}\\{4,}&{-1<x<3}\\{-2x+2,}&{x≤-1}\end{array}\right.$,
则对应的图象为:

(2)当a=0时,y=0与f(x)的图象没有交点,此时不等式f(x)≤ax的解集为空集,不满足条件.
当a>0时,当直线y=ax经过点A(3,4)时,3a=4,即a=$\frac{4}{3}$,
要使不等式f(x)≤ax的解集非空,
则a≥$\frac{4}{3}$,
当a<0时,当直线y=ax的斜率a=-2时,f(x)与y=ax平行,没有交点,
要使使不等式f(x)≤ax的解集非空,则-2<a<0,

综上要使不等式f(x)≤ax的解集非空,则a≥$\frac{4}{3}$或-2<a<0.

点评 本题主要考查分段函数的应用,利用数形结合以及分类讨论的数学思想是解决本题的关键.考查学生的运算和推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=x3-x+2在下列区间内一定存在零点的是(  )
A.(1,2)B.(0,1)C.(-2,-1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=alnx+$\frac{b(x+1)}{x}$,曲线y=f(x)在点(1,f(1))处的切线方程为y=2.
(I)求a、b的值;
(Ⅱ)当x>1时,不等式f(x)>$\frac{(x-k)lnx}{x-1}$恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若双曲线$\frac{x^2}{4}-\frac{y^2}{5}=1$与椭圆$\frac{x^2}{a^2}+\frac{y^2}{16}=1$有共同的焦点,且a>0,则a的值为(  )
A.5B.$\sqrt{7}$C.$\sqrt{15}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某少数民族的刺绣有着悠久的历史,如图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都是由小正方形构成.小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.

(Ⅰ)试写出f(1),f(2),f(3),f(4),f(5)的值;
(Ⅱ)利用合情推理中的“归纳推理思想”,归纳出f(n+1)与f(n)之间的关系式;并根据你得到的关系式求出f(n)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.y2=4x的准线方程为x=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{{x^2}+3x-3,x≤0}\end{array}}$,则函数零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ax2-(a+1)x+1-b(a,b∈R).
(Ⅰ)若a=1,关于x的不等式$\frac{f(x)}{x}$≥6在区间[1,3]上恒成立,求b的取值范围;
(Ⅱ)若b=0,解关于x的不等式f(x)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知圆C:(x-2)2+(y-1)2=4,直线l:y=-x+1,则l被圆C所截得的弦长为2$\sqrt{2}$.

查看答案和解析>>

同步练习册答案