精英家教网 > 高中数学 > 题目详情
10.已知圆C:(x-2)2+(y-1)2=4,直线l:y=-x+1,则l被圆C所截得的弦长为2$\sqrt{2}$.

分析 由题意可得,圆心为(2,1),半径r=2,求出弦心距d,再利用弦长公式求得直线l被C截得的弦长.

解答 解:由题意可得,圆心为(2,1),半径r=2,由于弦心距d=$\frac{|2+1-1|}{\sqrt{2}}$=$\sqrt{2}$,
故直线l被C截得的弦长为2$\sqrt{4-2}$=2$\sqrt{2}$,
故答案为:$2\sqrt{2}$.

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式,弦长公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已函数f(x)=|x+1|+|x-3|.
(1)作出函数y=f(x)的图象;
(2)若不等式f(x)≤ax的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x1,x2是方程ex-mx=0的两解,其中x1<x2,则下列说法正确的是(  )
A.x1x2-1>0B.x1x2-1<0C.x1x2-2>0D.x1x2-2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1}{2}$ax2-(2a+1)x+2lnx(a∈R).
(1)当a=1时,求f(x)的极值点.
(2)求y=f(x)的单调区间;
(3)设g(x)=x2-2x,当a≤$\frac{1}{2}$时,若对任意x1,x2∈(0,2],使得f(x1)<g(x2)恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=$\frac{x+1}{{x}^{2}+5x+6}$(x>-1)的最大值是3$-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知圆锥曲线x2+ay2=1的一个焦点坐标为$F(\frac{2}{{\sqrt{|a|}}},0)$,则该圆锥曲线的离心率为$\frac{{2\sqrt{3}}}{3}$或$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.对于数89,进行如下计算:82+92=145,12+42+52=42,42+22=20…,如此反复运算,则第2016次运算的结果是(  )
A.16B.37C.58D.89

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设f0(x)=cosx,f1(x)=f′0(x),f2(x)=f′1(x),fn+1(x)=f′n(x)(n∈N),则f2012(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

同步练习册答案