精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{{x^2}+3x-3,x≤0}\end{array}}$,则函数零点的个数为(  )
A.0B.1C.2D.3

分析 根据分段函数分段的标准分别研究函数在每一段上的零点的个数,然后得到整个函数的零点个数.

解答 解:当x≤0时,f(x)=x2+3x-3,令f(x)=0解得x=$\frac{-3-\sqrt{21}}{2}$或$\frac{-3+\sqrt{21}}{2}$(正值舍去)
当x>0时,f(x)=lnx,令f(x)=0解得x=1,
故函数f(x)=$\left\{{\begin{array}{l}{lnx,x>0}\\{{x^2}+3x-3,x≤0}\end{array}}$,则函数零点的个数为2.
故选:C.

点评 本题主要考查了分段函数的零点,解题常用的方法就是分段研究函数的零点,同时考查了运算求解的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{6}}}{3}$,点(1,0)与椭圆短轴的两个端点的连线互相垂直.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设椭圆C与直线y=kx+m相交于不同的两点M,N,点D(0,-1),当|DM|=|DN|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知正四棱柱ABCD-A1B1C1D1的底面边长是2,侧棱长是16,M,N分别是棱BB1、B1C1的中点.
(1)求异面直线MN与A1C1所成角的大小(结果用反三角表示)
(2)求直线MN与平面ACC1A1所成的角(结果用反三角函数表示)].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已函数f(x)=|x+1|+|x-3|.
(1)作出函数y=f(x)的图象;
(2)若不等式f(x)≤ax的解集非空,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=(sinx+cos)2+2$\sqrt{3}$sin2x
(1)求函数f(x)的最小正周期并求出单调递增区间;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足2acosC+c=2b,求f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=$\sqrt{10sinx-2}-\sqrt{5cosx-3}$
(1)若锐角θ满足tan2θ=$\frac{24}{7}$,问:θ是否为方程f(x)=1的解?为什么?
(2)求方程f(x)=1在区间(-∞,+∞)上的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正整数按图表的规律排列,则上起第17行,左起第11列的数应为117.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知x1,x2是方程ex-mx=0的两解,其中x1<x2,则下列说法正确的是(  )
A.x1x2-1>0B.x1x2-1<0C.x1x2-2>0D.x1x2-2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{m}$=(cos$\frac{x}{2}$,-1),$\overrightarrow{n}$=($\sqrt{3}$sin$\frac{x}{2}$,cos2$\frac{x}{2}$),设函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$+$\frac{1}{2}$.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案