【题目】如图,已知三棱锥
的侧棱
两两垂直,且
,
,
是
的中点.
![]()
(1)求异面直线
与
所成角的余弦值;
(2)求AE和平面
的所成角的正弦值.
科目:高中数学 来源: 题型:
【题目】已知
是抛物线
的焦点,恰好又是双曲线
的右焦点,双曲线
过点
,且其离心率为
.
(1)求抛物线
和双曲线
的标准方程;
(2)已知直线
过点
,且与抛物线
交于
,
两点,以
为直径作圆
,设圆
与
轴交于点
,
,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD为正三角形.且PA=2
.
![]()
(1)证明:平面PAB⊥平面PBC;
(2)若点P到底面ABCD的距离为2,E是线段PD上一点,且PB∥平面ACE,求四面体A-CDE的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知曲线
的参数方程为
,以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,曲线
的极坐标方程为
.
(1)求曲线
与曲线
两交点所在直线的极坐标方程;
(2)若直线
的极坐标方程为
,直线
与
轴的交点为
,与曲线
相交于
两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数
,
,则下列说法正确的有( )
A.不等式
的解集为
;
B.函数
在
单调递增,在
单调递减;
C.当
时,总有
恒成立;
D.若函数
有两个极值点,则实数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说:“数学物理不分家,如果物理成绩好,那么学习数学就没什么问题。”某班针对“高中生物理学习对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论。现从该班随机抽取5位学生在一次考试中的数学和物理成绩,如下表:
(1)求数学成绩y对物理成绩x的线性回归方程
。若某位学生的物理成绩为80分,预测他的数学成绩;
(2)要从抽取的这5位学生中随机抽取2位参加一项知识竞赛,求选中的学生的数学成绩至少有一位高于120分的概率。(参考公式:
参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线
的极坐标方程为
.
(1)写出曲线
的普通方程和直线
的直角坐标方程;
(2)若直线
与曲线
相交于
、
两点,求
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
,
.
(1)若
在点
处的切线与直线
垂直,求函数
在
点处的切线方程;
(2)若对于
,
恒成立,求正实数
的取值范围;
(3)设函数
,且函数
有极大值点
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com