精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.

1)写出曲线的普通方程和直线的直角坐标方程;

2)若直线与曲线相交于两点,求的面积.

【答案】1;(2.

【解析】

1)在曲线的参数方程中消去参数,可得出曲线的普通方程,将直线的极坐标方程化简为,由可将直线的极坐标方程化为直角坐标方程;

2)计算出圆心到直线的距离,利用勾股定理计算出,并计算出原点到直线的距离,进而利用三角形的面积公式可求得的面积.

1)由,得

故曲线的普通方程是.

,得

,得

代入公式.

故直线的直角坐标方程是

2)因为原点到直线的距离为

曲线表示圆心为,半径的圆.

到直线的距离,所以.

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且,抛物线的通径与椭圆的右通径在同一直线上.

1)求椭圆与抛物线的标准方程;

2)过抛物线焦点且倾斜角为的直线与椭圆交于两点,为椭圆的左焦点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知抛物线 ,直线与抛物线相交于两点,且当倾斜角为的直线经过抛物线的焦点时,有.

(1)求抛物线的方程;

(2)已知圆,是否存在倾斜角不为的直线,使得线段被圆截成三等分?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中央政府为了应对因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”.为了了解人们]对“延迟退休年龄政策”的态度,责成人社部进行调研.人社部从网上年龄在1565岁的人群中随机调查100人,调査数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:

年龄

支持“延迟退休”的人数

15

5

15

28

17

(1)由以上统计数据填列联表,并判断能否在犯错误的概率不超过0.05的前提下认为以45岁为分界点的不同人群对“延迟退休年龄政策”的支持度有差异;

45岁以下

45岁以上

总计

支持

不支持

总计

(2)若以45岁为分界点,从不支持“延迟退休”的人中按分层抽样的方法抽取8人参加某项活动.现从这8人中随机抽2人

①抽到1人是45岁以下时,求抽到的另一人是45岁以上的概率.

②记抽到45岁以上的人数为,求随机变量的分布列及数学期望.

参考数据:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知半径为的球面上有两点,且,球心为,若是球面上的动点,且二面角的大小为,则四面体的外接球表面积为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某幼儿园根据部分同年龄段的100名女童的身高数据绘制了频率分布直方图,其中身高的变化范围是[96106](单位:厘米),样本数据分组为[9698)[98100)[100102)[102104)[104106)

1)求出的值,并求样本中女童的身高的众数和中位数,平均数;

2)在身高在[100102)[102104)[104106]的三组中,用分层抽样的方法抽取14名女童,则身高数据在[104106]的女童中应抽取多少人数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图为我国数学家赵爽3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,且,椭圆经过点.

1)求椭圆的方程;

2)直线过椭圆右顶点,交椭圆于另一点,点在直线上,且.,求直线的斜率.

查看答案和解析>>

同步练习册答案