精英家教网 > 高中数学 > 题目详情
5.在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,BC=4,E是PD的中点,求平面EAC与平面ABCD的夹角.

分析 以A为原点,AC为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出平面EAC与平面ABCD的夹角.

解答 解:∵AB⊥AC,PA⊥平面ABCD,且PA=AB=2,BC=4,E是PD的中点,
∴以A为原点,AC为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
P(0,0,2),D(2$\sqrt{3}$,-2,0),E($\sqrt{3}$,-1,1),A(0,0,0),
C(2$\sqrt{3}$,0,0),
$\overrightarrow{AE}$=($\sqrt{3},-1,1$),$\overrightarrow{AC}$=(2$\sqrt{3}$,0,0),
设平面AEC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AE}=\sqrt{3}x-y+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=2\sqrt{3}x=0}\end{array}\right.$,取y=1,得$\overrightarrow{n}$=(0,1,1),
平面ABCD的法向量$\overrightarrow{m}$=(0,0,1),
设平面EAC与平面ABCD的夹角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{2}}=\frac{\sqrt{2}}{2}$.
∴$θ=arccos\frac{\sqrt{2}}{2}$=$\frac{π}{4}$,
∴平面EAC与平面ABCD的夹角为$\frac{π}{4}$.

点评 本题考查二面角的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知底面为平行四边形的四棱锥S-ABCD中,P为SB中点,Q为AD上一点,若PQ∥面SDC,求AQ:QD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若实数a,b,c成等差数列,动直线l:ax+by+c=0与圆x2+y2=9相交于A,B两点,则使得弦长|AB|为整数的直线l共有(  )条.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果采用圆外切多边形的周长逐渐逼近圆周长的算法计算圆周率π,其所计算出π的值是(  )
A.精确值B.不足近似值C.过剩近似值D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.A={x|y=$\sqrt{1-{x}^{2}}$},B={y|y=$\sqrt{1-{x}^{2}}$},C={x,y)|y=$\sqrt{1-{x}^{2}}$},A,B,C是同一个集合吗?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知三棱锥A-BCD的各棱长均为2,求二面角A-CD-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在五棱锥S-ABCDE中,SA⊥底面ABCDE,SA=AB=AE=2,BC=DE=$\sqrt{3}$,∠BAE=∠BCD=∠CDE=120°
(1)求证:SB⊥BC;
(2)求点E到平面SCD的距离;
(3)求平面SCB与平面SCA的夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AC为线段BD的垂直平分线,且AE=BE=$\frac{1}{2}$CE=1,现将△BCD沿线段BD翻折到PBD,使二面角P-BD-A为60°.
(1)证明:PA⊥平面ABD;
(2)设AB的中点为F,求点F到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=-1+cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴正半轴为极轴.建立极坐标系,直线l的极坐标方程为ρ(cosθ+ksinθ)=-2(k为实数).
(1)判断曲线C1与直线l的位置关系,并说明理由;
(2)若曲线C1和直线l相交于A,B两点,且|AB|=$\sqrt{2}$,求直线l的斜率.

查看答案和解析>>

同步练习册答案