精英家教网 > 高中数学 > 题目详情
10.若实数a,b,c成等差数列,动直线l:ax+by+c=0与圆x2+y2=9相交于A,B两点,则使得弦长|AB|为整数的直线l共有(  )条.
A.2B.3C.4D.5

分析 根据题意,利用等差数列的定义求出直线l恒过定点(1,-2),画出图形,讨论弦长|AB|的取值范围,从而求出满足条件的直线条数.

解答 解:实数a,b,c成等差数列,所以2b=a+c,
所以直线l:ax+by+c=0恒过定点P(1,-2);
当直线1与OP垂直时,圆心O到定点P的距离d=$\sqrt{5}$,
弦长|AB|=2$\sqrt{{r}^{2}{-d}^{2}}$=4,满足题意,此时直线有1条;
当直线1过圆心O时,弦长|AB|=2r=6,满足题意,此时直线有1条;
当弦长|AB|=5时,对应的直线应有2条,如图所示;
综上,直线l被圆x2+y2=9所截得弦长为整数时,
对应的直线l有4条.
故选:C.

点评 本题考查了直线与圆的方程的应用问题,也考查了等差数列的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,PA,PC为圆O的两条不同切线,割线PDB与圆O交于不同两点D,B.
(1)求证:$\frac{AD}{AB}$=$\frac{PC}{PB}$;
(2)若DA=4,AB=6,BC=3,求线段CD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=e2x-1-2x-kx2
(1)当k=0时,求f(x)的单调区间;
(2)若x≥0时,f(x)≥0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的函数,且f(x)=f(x+2)恒成立,当x∈(-2,0)时,f(x)=x3-x,则当x∈(2,3)时,函数f(x)的解析式为f(x)=x3-12x2+47x-12 (2<x<3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:4x+3y-5=0与圆C:x2+y2-4=0交于A、B两点,O为坐标原点,则 $\overrightarrow{OA}$•$\overrightarrow{OB}$=(  )
A.2$\sqrt{3}$B.-2$\sqrt{3}$C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-ax2-x(a∈R).
(1)若f(x)在定义域上是增函数,求实数a的取值范围;
(2)若-$\frac{1}{9}$≤a≤-$\frac{1}{10}$,证明:方程f′(x)=0有两个不等实根x1,x2,并求|x2-x1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知圆O的方程为x2+y2=9,圆内一点C(2,1),过C且不过圆心的动直线l交圆O于P、Q两点,圆心O到直线l的距离为d.
(1)用d表示△OPQ的面积S,并写出函数S(d)定义域;
(2)求S的最大值并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在底面为平行四边形的四棱锥P-ABCD中,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,BC=4,E是PD的中点,求平面EAC与平面ABCD的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图所示,正四棱锥P-ABCD的高为2,AB=3,E为PB的中点.
(1)建立合适的坐标系,并写出所有点的坐标.
(2)求出CE的长度.

查看答案和解析>>

同步练习册答案