精英家教网 > 高中数学 > 题目详情
18.已知f(x)是定义在R上的函数,且f(x)=f(x+2)恒成立,当x∈(-2,0)时,f(x)=x3-x,则当x∈(2,3)时,函数f(x)的解析式为f(x)=x3-12x2+47x-12 (2<x<3).

分析 由题意可得函数f(x)的周期为2,当x∈(2,3)时,则x-4∈(-2,-1),根据 f(x)=f(x-4),求得f(x)的解析式.

解答 解:由f(x)=f(x+2)恒成立,可得函数f(x)的周期为2,∵当x∈(-2,0)时,f(x)=x3-x,
则当x∈(2,3)时,则x-4∈(-2,-1)⊆(-2,0),
∴f(x)=f(x-4)=(x-4)3-(x-4)=x3-12x2+47x-12,
即当x∈(2,3)时,函数f(x)的解析式为f(x)=x3-12x2+47x-12,
故答案为:f(x)=x3-12x2+47x-12(2<x<3).

点评 本题主要考查求函数的解析式的方法,函数的周期性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在矩形ABCD中,AB=2,BC=1,沿AC折成大小为60°的二面角,则BD等于$\frac{\sqrt{65}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知底面为平行四边形的四棱锥S-ABCD中,P为SB中点,Q为AD上一点,若PQ∥面SDC,求AQ:QD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图,正方体ABCD-A1B1C1D1的棱长为a,点M、N、E、F分别是A1B1、A1D1、B1C1、C1D1的中点,则点M到平面EFDB的距离为$\frac{12\sqrt{19}}{19}$;直线AM与平面EFDB的距离为$\frac{12\sqrt{19}}{19}$;平面AMN与平面EFDB的距离为$\frac{12\sqrt{19}}{19}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ln$\frac{1}{2x}$-ax2+x,
(1)讨论函数f(x)的极值点的个数;
(2)若f(x)有两个极值点x1,x2,证明:f(x1)+f(x2)>3-4ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.不等式|x-2|+|x+3|>a恒成立,则参数a的范围是(  )
A.a≤5B.a<5C.a≤1D.a<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若实数a,b,c成等差数列,动直线l:ax+by+c=0与圆x2+y2=9相交于A,B两点,则使得弦长|AB|为整数的直线l共有(  )条.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果采用圆外切多边形的周长逐渐逼近圆周长的算法计算圆周率π,其所计算出π的值是(  )
A.精确值B.不足近似值C.过剩近似值D.以上都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,AC为线段BD的垂直平分线,且AE=BE=$\frac{1}{2}$CE=1,现将△BCD沿线段BD翻折到PBD,使二面角P-BD-A为60°.
(1)证明:PA⊥平面ABD;
(2)设AB的中点为F,求点F到平面PBD的距离.

查看答案和解析>>

同步练习册答案