精英家教网 > 高中数学 > 题目详情
6.如图,正方体ABCD-A1B1C1D1的棱长为a,点M、N、E、F分别是A1B1、A1D1、B1C1、C1D1的中点,则点M到平面EFDB的距离为$\frac{12\sqrt{19}}{19}$;直线AM与平面EFDB的距离为$\frac{12\sqrt{19}}{19}$;平面AMN与平面EFDB的距离为$\frac{12\sqrt{19}}{19}$.

分析 证明平面AMN∥平面EFDB.点M到平面EFDB的距离=直线AM与平面EFDB的距离=平面AMN与平面EFDB的距离=B到平面AMN的距离平面AMN与平面EFDB的距离=B到平面AMN的距离h,利用等体积求平面AMN与平面EFDB的距离.

解答 解:∵M、N分别为A1B1、A1D1的中点,E、F分别是B1C1、C1D1的中点,
∴MN∥EF∥B1D1
∵MN?平面EFDB,EF?平面EFDB,
∴MN∥平面EFDB,
∵NF平行且等于AB,
∴ABFN是平行四边形,
∴AN∥BF,
∵AN?平面EFDB,BF?平面EFDB,
∴AN∥平面EFDB,
∵AN∩MN=N,
∴平面AMN∥平面EFDB;
点M到平面EFDB的距离=直线AM与平面EFDB的距离=平面AMN与平面EFDB的距离=B到平面AMN的距离h.
△AMN中,AM=AN=$\sqrt{10}$,MN=$\sqrt{2}$,S△AMN=$\frac{1}{2}•\sqrt{2}•\sqrt{10-\frac{1}{2}}$=$\frac{\sqrt{19}}{2}$,
∴由等体积可得$\frac{1}{3}•\frac{\sqrt{19}}{2}h=\frac{1}{3}•\frac{1}{2}•2•2•3$,
∴h=$\frac{12\sqrt{19}}{19}$.
故答案为:$\frac{12\sqrt{19}}{19}$,$\frac{12\sqrt{19}}{19}$,$\frac{12\sqrt{19}}{19}$.

点评 本题考查线面、面面平行的判定,考查平面与平面间距离的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知曲线f(x)=x3-2x.求:
(1)在点(1,-1)处的切线方程;
(2)过点(1,-1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC中,∠ACB=$\frac{π}{2}$,P是平面ABC外的一点,PA=PB=PC,AC=12,P到平面ABC的距离为8,则P到BC的距离为10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.人如图,在四棱锥P-ABCD中,底面ABCD是梯形,AB∥CD,∠BAD=60°,AB=2AD,AP⊥BD.
(1)证明:平面ABD⊥平面PAD;
(2)若PA与平面ABCD所成的角为60°,AD=2,PA=PD,求点C到平面PAB的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=e2x-1-2x-kx2
(1)当k=0时,求f(x)的单调区间;
(2)若x≥0时,f(x)≥0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知P(x,y)是函数y=1+lnx图象上一点,O是坐标原点,直线OP的斜率为f(x).
(Ⅰ)求函数f(x)的极值;
(Ⅱ)设g(x)=$\frac{x}{a(1-x)}$[xf(x)-1],若对任意的x∈(0,1)恒有g(x)>-1,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知f(x)是定义在R上的函数,且f(x)=f(x+2)恒成立,当x∈(-2,0)时,f(x)=x3-x,则当x∈(2,3)时,函数f(x)的解析式为f(x)=x3-12x2+47x-12 (2<x<3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx-ax2-x(a∈R).
(1)若f(x)在定义域上是增函数,求实数a的取值范围;
(2)若-$\frac{1}{9}$≤a≤-$\frac{1}{10}$,证明:方程f′(x)=0有两个不等实根x1,x2,并求|x2-x1|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{t}_{1}}\\{0}&{1}&{{t}_{2}}\end{array})$,解为$\left\{\begin{array}{l}{x=3}\\{y=5}\end{array}\right.$,则三阶行列式$[\begin{array}{l}{1}&{-1}&{{t}_{1}}\\{0}&{1}&{-1}\\{-1}&{{t}_{2}}&{-6}\end{array}]$的值为19.

查看答案和解析>>

同步练习册答案