精英家教网 > 高中数学 > 题目详情
17.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法--“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6102,b=2016时,输出的a=(  )
A.6B.9C.12D.18

分析 模拟程序框图的运行过程,该程序执行的是欧几里得辗转相除法,求出运算结果即可.

解答 解:模拟程序框图的运行过程,如下;
a=6102,b=2016,
执行循环体,r=54,a=2016,b=54,
不满足退出循环的条件,执行循环体,r=18,a=54,b=18,
不满足退出循环的条件,执行循环体,r=0,a=18,b=0,
满足退出循环的条件r=0,退出循环,输出a的值为18.
故选:D.

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的答案,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则log2(a4a5a6)=(  )
A.$\frac{1}{2}$+log25B.$\frac{1}{2}$+2log25C.$\frac{1}{2}$+log52D.1+log25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$中,椭圆长轴长是短轴长的$\sqrt{3}$倍,短轴的一个端点与两个焦点构成的三角形的面积为$\frac{{5\sqrt{2}}}{3}$.
(1)求椭圆C的标准方程;
(2)已知动直线y=k(x+1)与椭圆C相交于A,B两点,
①若线段AB的中点的横坐标为$-\frac{1}{2}$,求斜率k的值;
②已知点$M(-\frac{7}{3},0)$,求证:$\overrightarrow{MA}•\overrightarrow{MB}$为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知一个几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图均为正方形,那么,该几何体的外接球的表面积为12π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知α为第三象限角,且f(α)=$\frac{sin(\frac{3π}{2}-α)cos(\frac{π}{2}-α)tan(-α+π)}{sin(\frac{π}{2}+α)tan(2π-α)}$.
(1)化简f(α);
(2)若α=-$\frac{32}{3}$π,求f(α)的值.
(3)若f(α)=$\frac{2\sqrt{6}}{5}$,求cos(π+α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设命题甲:|x-1|>2,命题乙:x>3,则甲是乙的必要不充分条件条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如果实数x,y满足条件$\left\{\begin{array}{l}y≤1\\ 2x-y-1≤0\\ x+y-1≥0\end{array}\right.$,则x2+y2的最大值为(  )
A.$\sqrt{2}$B.$\frac{1}{2}$C.1D.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.极坐标系中,抛物线C的顶点在极点O,对称轴为极轴,焦点F(1,0).
(I)求抛物线的极坐标方程;
(Ⅱ)A,B在抛物线上,若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$),求△OAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是偶函数,当x>0时,f(x)=x+$\frac{m}{x}$,且f(-2)=3,则曲线f(x)在点(1,f(1))处的切线方程为(  )
A.2x-y+1=0B.x-y-4=0C.x+y-2=0D.x+y-4=0

查看答案和解析>>

同步练习册答案