精英家教网 > 高中数学 > 题目详情
2.设命题甲:|x-1|>2,命题乙:x>3,则甲是乙的必要不充分条件条件.

分析 解:甲:|x-1|>2,解得x>3或x<-1.命题乙:x>3,即可判断出结论.

解答 解:甲:|x-1|>2,解得x>3或x<-1.
命题乙:x>3,
∴甲⇒乙,反之不成立.
则甲是乙的必要不充分条件条件.
故答案为:必要不充分条件.

点评 本题考查了不等式的解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.直线ax+y-3=0与圆x2+(y-1)2=4的位置关系是(  )
A.相交B.相切或相交C.相离D.相切

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知a,b,c分别是△ABC中角A,B,C的对边,G是△ABC的三条边上中线的交点,若$\overrightarrow{GA}+(a+b)\overrightarrow{GB}+2c\overrightarrow{GC}$=$\overrightarrow 0$,且$\frac{1}{a}+\frac{2}{b}$≥cos2x-msinx(x∈R)恒成立,则实数m的取值范围为[-4-2$\sqrt{2}$,4+2$\sqrt{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC中,a、b、c成等差数列,∠B=30°,S△ABC=$\frac{1}{2}$,那么b=(  )
A.1+$\sqrt{3}$B.$\frac{3+\sqrt{3}}{2}$C.$\frac{2+\sqrt{3}}{3}$D.$\frac{3+\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与古老的算法--“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a=6102,b=2016时,输出的a=(  )
A.6B.9C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若椭圆$\frac{x^2}{m}+\frac{y^2}{n}=1(m>n>0)$与曲线x2+y2=m-n无交点,则椭圆的离心率e的取值范围为$({0,\frac{{\sqrt{2}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知定义域为A的函数f(x),若对任意的x1,x2∈A,都有f(x1+x2)-f(x1)≤f(x2),则称函数f(x)为“定义域上的M函数”,给出以下五个函数:
(1)f(x)=2x+3,x∈R;(2)$f(x)={x^2},x∈[-\frac{1}{2},\frac{1}{2}]$;(3)$f(x)={x^2}+1,x∈[-\frac{1}{2},\frac{1}{2}]$;(4)$f(x)=sinx,x∈[0,\frac{π}{2}]$;(5)f(x)=log2x,x∈[2,+∞).其中是“定义域上的M函数”的
有4个.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知奇函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是定义域为R的减函数.
(Ⅰ)求a,b的值;
(Ⅱ)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=a(x+1)2-4lnx,a∈R.
(1)若x=1是f(x)的极值点,求a的值;
(2)已知点P(0,1)和函数f(x)图象上动点M(m,f(m)),对任意m∈[1,e],直线PM倾斜角都是钝角,求a的取值范围.

查看答案和解析>>

同步练习册答案