分析 椭圆$\frac{x^2}{m}+\frac{y^2}{n}=1(m>n>0)$与曲线x2+y2=m-n无交点,可得m-n>m,或0<m-n<n,利用椭圆的离心率e=$\sqrt{1-\frac{n}{m}}$,即可得出.
解答 解:∵椭圆$\frac{x^2}{m}+\frac{y^2}{n}=1(m>n>0)$与曲线x2+y2=m-n无交点,
∴m-n>m,或0<m-n<n,
m-n>m,舍去.
由0<m-n<n,可得:$\frac{n}{m}$>$\frac{1}{2}$.
则椭圆的离心率e=$\sqrt{1-\frac{n}{m}}$∈$(0,\frac{\sqrt{2}}{2})$.
故答案为:$({0,\frac{{\sqrt{2}}}{2}})$.
点评 本题考查了椭圆的标准方程及其性质、不等式的解法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2013 | B. | 1007 | C. | 2015 | D. | 1009 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{a}<\frac{1}{b}<0$ | B. | b2>a2 | C. | |b|>|a| | D. | b3>a3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{{\frac{a_1^2+a_2^2+…+a_n^2}{n}}}$ | B. | $\frac{{a}_{1}+{a}_{2}+…+{a}_{n}}{n}$ | ||
| C. | $\root{n}{{a}_{1}{a}_{2}…{a}_{n}}$ | D. | $\frac{n}{\frac{1}{{a}_{1}}+\frac{1}{{a}_{2}}+…+\frac{1}{{a}_{n}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com