精英家教网 > 高中数学 > 题目详情
15.若$f(x)=\frac{1}{3}{x^3}+a{x^2}-2x$在区间[-1,+∞)上有极大值和极小值,则实数a的取值范围是(-∞,-$\frac{1}{2}$).

分析 求出函数的导数,根据极值的定义结合二次函数的性质得到关于a的不等式组,解出即可.

解答 解:∵f(x)=$\frac{1}{3}$x3+ax2-2x,∴f'(x)=x2+2ax-2,
∵函数f(x)在区间[-1,+∞)上有极大值和极小值,
∴f'(x)=x2+2ax-2=0在区间[-1,+∞)上有两个不等实根,
∴$\left\{\begin{array}{l}{△={4a}^{2}+8>0}\\{-a>-1}\\{f′(-1)=1-2a-2>0}\end{array}\right.$,解得a<-$\frac{1}{2}$,
故答案为:(-∞,-$\frac{1}{2}$).

点评 本题主要考查函数在某点取得极值的条件,以及二次函数根的分布问题,体现了转化和数形结合的思想,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$(n∈N*),则an=$\frac{n}{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=2px(p>0),倾斜角为$\frac{π}{4}$的直线AB过抛物线的焦点F且与抛物线交于A,B两点(|AF|>|BF|).过A点作抛物线的切线与抛物线的准线交于C点,直线CF交抛物线于D,E两点(|DF|<|FE|).直线AD,BE相交于G,则G点的横坐标为(  )
A.$-\frac{{\sqrt{2}p}}{4}$B.$-\frac{p}{2}$C.$-\frac{{\sqrt{3}p}}{2}$D.-p

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A={0,1,2},B={a+2,a2+3},A∩B={1},则实数a的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.△ABC中,a、b、c成等差数列,∠B=30°,S△ABC=$\frac{1}{2}$,那么b=(  )
A.1+$\sqrt{3}$B.$\frac{3+\sqrt{3}}{2}$C.$\frac{2+\sqrt{3}}{3}$D.$\frac{3+\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,已知矩形ABCD中,AB=10,BC=6,将矩形沿对角线BD把△ABD折起,使A移到A1点,且A1O⊥平面BCD.
(1)求证:BC⊥A1D;
(2)求证:平面A1BC⊥平面A1BD;
(3)求三棱锥A1-BCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若椭圆$\frac{x^2}{m}+\frac{y^2}{n}=1(m>n>0)$与曲线x2+y2=m-n无交点,则椭圆的离心率e的取值范围为$({0,\frac{{\sqrt{2}}}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(α)=cosα$\sqrt{\frac{cotα-cosα}{cotα+cosα}}$+sinα$\sqrt{\frac{tanα-sinα}{tanα+sinα}}$,且α为第二象限角.
(1)化简f(α);
(2)若f(-α)=$\frac{1}{5}$,求$\frac{1}{tanα}$-$\frac{1}{cotα}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知直线过点(2,3),它在x轴上的截距是在y轴上的截距的2倍,则此直线的方程为3x-2y=0或x+2y-8=0.

查看答案和解析>>

同步练习册答案