精英家教网 > 高中数学 > 题目详情
5.已知数列{an}满足a1=1,$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$(n∈N*),则an=$\frac{n}{3n-2}$.

分析 把已知数列递推式裂项变形,然后利用累加法求得数列{an}的通项公式.

解答 解:由$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$,得$\frac{1}{{a}_{n+1}}-\frac{1}{{a}_{n}}=2(\frac{1}{n}-\frac{1}{n+1})$,
∵a1=1,
∴$\frac{1}{{a}_{n}}=(\frac{1}{{a}_{n}}-\frac{1}{{a}_{n-1}})+(\frac{1}{{a}_{n-1}}-\frac{1}{{a}_{n-2}})+…+(\frac{1}{{a}_{2}}-\frac{1}{{a}_{1}})+\frac{1}{{a}_{1}}$
=2[($\frac{1}{n-1}-\frac{1}{n}$)+($\frac{1}{n-2}-\frac{1}{n-1}$)+…+(1-$\frac{1}{2}$)]+1
=2(1-$\frac{1}{n}$)+1=$\frac{3n-2}{n}$,
∴${a}_{n}=\frac{n}{3n-2}$.
故答案为:$\frac{n}{3n-2}$.

点评 本题考查数列递推式,考查了裂项相消法求数列的通项公式,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.b2=ac是$\frac{a}{b}$=$\frac{b}{c}$成立的(  )
A.充分而不必要条件B.充要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知甲、乙两名篮球运动员某十场比赛得分的茎叶图如图所示,则甲、乙两人在这十场比赛中得分的平均数与方差的大小关系为(  )
A.$\overline{X_甲}$<$\overline{X_乙}$,S2<S2B.$\overline{X_甲}$<$\overline{X_乙}$,S2>S2
C.$\overline{X_甲}$>$\overline{X_乙}$,S2>S2D.$\overline{X_甲}$>$\overline{X_乙}$,S2<S2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.直线(2+λ)x+(λ-1)y-2λ-1=0经过的定点坐标为(1,1),经过此定点且与3x-2y=0垂直的直线方程是2x+3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.圆柱的轴截面是边长为5cm的正方形ABCD,从A到C圆柱侧面上的最短距离是$\frac{5\sqrt{4+{π}^{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知关于x不等式y=log2(x2-a|x|+3)≥1恒成立,则实数a的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x+1)=f(x-1),f(x)=f(-x+2),方程f(x)=0在[0,1]内有且只有一个根$x=\frac{1}{2}$,则f(x)=0在区间[0,2015]内根的个数为(  )
A.2013B.1007C.2015D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图甲所示的茎叶图为高三某班60名学生某次数学模拟考试的成绩,算法框图图乙中输入的ai为茎叶图的学生成绩,则输出的m,n,k分别是(  )
A.m=18,n=31,k=11B.m=18,n=33,k=9C.m=20,n=30,k=9D.m=20,n=29,k=11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若$f(x)=\frac{1}{3}{x^3}+a{x^2}-2x$在区间[-1,+∞)上有极大值和极小值,则实数a的取值范围是(-∞,-$\frac{1}{2}$).

查看答案和解析>>

同步练习册答案