精英家教网 > 高中数学 > 题目详情
15.b2=ac是$\frac{a}{b}$=$\frac{b}{c}$成立的(  )
A.充分而不必要条件B.充要条件
C.必要而不充分条件D.既不充分也不必要条件

分析 由$\frac{a}{b}$=$\frac{b}{c}$可得b2=ac,反之不成立.即可判断出结论.

解答 解:由$\frac{a}{b}$=$\frac{b}{c}$可得b2=ac,反之不成立.
∴b2=ac是$\frac{a}{b}$=$\frac{b}{c}$成立的必要不成立条件.
故选:C.

点评 本题考查了比例的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.化简或求值.
(1)(${\frac{64}{27}}$)${\;}^{-\frac{2}{3}}}$-$\root{3}{0.125}$+($\sqrt{2}$-1)0
(2)4•$\root{4}{x}$•(-3•$\root{4}{x}$)•$\frac{1}{{\root{3}{y}}}$÷$\frac{{-6•\root{3}{y^2}}}{{\sqrt{x}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}满足a1=1,log2an+1=log2an+1,它的前n项和为Sn,则满足Sn>2015的最小的n值是11.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知映射$f:R→{R_+},x→{x^2}+1$.则10的原象是(  )
A.3B.-3C.3和-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知动点P(x,y)到直线$l:x=2\sqrt{2}$的距离是它到点$F(\sqrt{2},0)$的距离的$\sqrt{2}$倍.
(1)求动点P的轨迹C的方程;
(2)若直线y=k(x-1)与轨迹C交于不同的两点M,N.A(2,0),当△AMN的面积为$\frac{\sqrt{10}}{3}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,在四边形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2$\sqrt{2}$,AD=2,求四边形ABCD绕AD旋转一周所成几何体的表面积及体积.
注:圆台的体积和侧面积公式:
V=$\frac{1}{3}$(S+S+$\sqrt{S上•S下}$)h=$\frac{1}{3}$π(r${\;}_{1}^{2}$+r${\;}_{2}^{2}$+r1r2)h
S=π(r+r)l
圆锥的侧面积公式:V=$\frac{1}{3}$Sh,S=πrl.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}中,a2+a7=6,则3a4+a6=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题:?x>0,x(x-1)>0的否定形式为(  )
A.?x>0,x(x-1)≤0B.?x>0,x(x-1)≤0C.?x≤0,x(x-1)≤0D.?x>0,x(x-1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$(n∈N*),则an=$\frac{n}{3n-2}$.

查看答案和解析>>

同步练习册答案