精英家教网 > 高中数学 > 题目详情
16.已知甲、乙两名篮球运动员某十场比赛得分的茎叶图如图所示,则甲、乙两人在这十场比赛中得分的平均数与方差的大小关系为(  )
A.$\overline{X_甲}$<$\overline{X_乙}$,S2<S2B.$\overline{X_甲}$<$\overline{X_乙}$,S2>S2
C.$\overline{X_甲}$>$\overline{X_乙}$,S2>S2D.$\overline{X_甲}$>$\overline{X_乙}$,S2<S2

分析 由茎叶图,分别求出$\overline{{x}_{甲}}$和$\overline{{x}_{乙}}$,由茎叶图知:甲的数据较分散,乙的数所较集中,由此能求出结果.

解答 解:由茎叶图,得:
$\overline{{x}_{甲}}$=$\frac{1}{10}$(15+24+23+31+36+37+39+49+44+50)=34.8,
$\overline{{x}_{乙}}$=$\frac{1}{8}$(18+16+14+13+28+26+23+51)=23.625,
∴$\overline{{x}_{甲}}$>${\overline{{x}_{乙}}}_{\;}$,
又由茎叶图知:甲的数据较分散,乙的数所较集中,
∴${{S}_{甲}}^{2}$<${{x}_{乙}}^{2}$,
故选:D.

点评 本题考查两组数据的平均数、方差的比较,是基础题,解题时要认真审题,注意茎叶图性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.数列{an}满足a1=1,log2an+1=log2an+1,它的前n项和为Sn,则满足Sn>2015的最小的n值是11.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知等差数列{an}中,a2+a7=6,则3a4+a6=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题:?x>0,x(x-1)>0的否定形式为(  )
A.?x>0,x(x-1)≤0B.?x>0,x(x-1)≤0C.?x≤0,x(x-1)≤0D.?x>0,x(x-1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知等差数列{an}的前n项和为Sn,公差d≠0,且S3=6,a1,a2,a4成等比数列.
(1)求数列{an}的通项公式;
(2)设${b_n}={2^{a_n}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,下列两个命题中是真命题的为①.
①“A1A2+B1B2=0”是“l1⊥l2”充要条件;
②“(-$\frac{{A}_{1}}{{B}_{1}}$)•(-$\frac{{A}_{2}}{{B}_{2}}$)=-1”是“l1⊥l2”充要条件;
③“A1B2-A2B1=0”是“l1∥l2”的充要条件;
④“-$\frac{{A}_{1}}{{B}_{1}}$=-$\frac{{A}_{2}}{{B}_{2}}$”是“l1∥l2”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=log23,$b=\frac{4}{3}$,c=log34,则a,b,c的大小关系为(  )
A.b<a<cB.c<a<bC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$(n∈N*),则an=$\frac{n}{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知抛物线y2=2px(p>0),倾斜角为$\frac{π}{4}$的直线AB过抛物线的焦点F且与抛物线交于A,B两点(|AF|>|BF|).过A点作抛物线的切线与抛物线的准线交于C点,直线CF交抛物线于D,E两点(|DF|<|FE|).直线AD,BE相交于G,则G点的横坐标为(  )
A.$-\frac{{\sqrt{2}p}}{4}$B.$-\frac{p}{2}$C.$-\frac{{\sqrt{3}p}}{2}$D.-p

查看答案和解析>>

同步练习册答案