精英家教网 > 高中数学 > 题目详情
13.直线(2+λ)x+(λ-1)y-2λ-1=0经过的定点坐标为(1,1),经过此定点且与3x-2y=0垂直的直线方程是2x+3y-5=0.

分析 由条件利用利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,可得结论.设直线方程为2x+3y+c=0,代入(1,1),可得c=-5,即可得出结论.

解答 解:直线(2+λ)x+(λ-1)y-2λ-1=0,即 直线(2x-y-1)+λ(x+y-2)=0,
它一定经过2x-y-1=0 和x+y-2=0 的交点.
由$\left\{\begin{array}{l}{2x-y-1=0}\\{x+y-2=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,可得直线(2+λ)x+(λ-1)y-2λ-1=0经过的定点坐标为(1,1),
设直线方程为2x+3y+c=0,代入(1,1),可得c=-5,
∴经过此定点且与3x-2y=0垂直的直线方程是2x+3y-5=0
故答案为:(1,1),2x+3y-5=0.

点评 本题主要考查直线过定点问题,考查直线方程,利用了m(ax+by+c)+(a′x+b′y+c′)=0 经过直线ax+by+c=0和直线a′x+b′y+c′=0的交点,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知映射$f:R→{R_+},x→{x^2}+1$.则10的原象是(  )
A.3B.-3C.3和-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.命题:?x>0,x(x-1)>0的否定形式为(  )
A.?x>0,x(x-1)≤0B.?x>0,x(x-1)≤0C.?x≤0,x(x-1)≤0D.?x>0,x(x-1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.对于直线l1:A1x+B1y+C1=0和l2:A2x+B2y+C2=0,下列两个命题中是真命题的为①.
①“A1A2+B1B2=0”是“l1⊥l2”充要条件;
②“(-$\frac{{A}_{1}}{{B}_{1}}$)•(-$\frac{{A}_{2}}{{B}_{2}}$)=-1”是“l1⊥l2”充要条件;
③“A1B2-A2B1=0”是“l1∥l2”的充要条件;
④“-$\frac{{A}_{1}}{{B}_{1}}$=-$\frac{{A}_{2}}{{B}_{2}}$”是“l1∥l2”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设a=log23,$b=\frac{4}{3}$,c=log34,则a,b,c的大小关系为(  )
A.b<a<cB.c<a<bC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,M、N分别是四面体OABC的边OA,BC的中点,$\overrightarrow{MP}=3\overrightarrow{PN}$,若$\overrightarrow{OP}=x\overrightarrow{OA}+y\overrightarrow{OB}+z\overrightarrow{OC}$,则x、y、z的值分别为(  )
A.$\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$B.$\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{6}$C.$\frac{1}{8}$,$\frac{3}{8}$,$\frac{3}{8}$D.$\frac{3}{8}$,$\frac{1}{8}$,$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足a1=1,$\frac{{{a_n}-{a_{n+1}}}}{{{a_n}{a_{n+1}}}}=\frac{2}{n(n+1)}$(n∈N*),则an=$\frac{n}{3n-2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=lg (2-x)的单调递减区间是(-∞,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设集合A={0,1,2},B={a+2,a2+3},A∩B={1},则实数a的值为-1.

查看答案和解析>>

同步练习册答案