精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ex,g(x)=ax2+bx+1,当a=0时,若f(x)≥g(x)对任意x恒成立,求b的取值集合.
考点:函数恒成立问题
专题:函数的性质及应用
分析:令h(x)=ex-bx-1≥0对任意x恒成立,h'(x)=ex-b,由此利用导数性质能求出b的取值集合.
解答: 解:∵函数f(x)=ex,g(x)=ax2+bx+1,
当a=0时,f(x)≥g(x)对任意x恒成立,
令h(x)=ex-bx-1≥0对任意x恒成立,
h(x)=e^2-bx-1,当x=lnb取最小,最小值应为为b-blnb-1≥0,
令t(b)=b-blnb-1
t'(b)=1-b•
1
b
-lnb=-lnb=0时,
b=1,t(b)在(0,1)上单调递增,在(1,+∞)上单调递增,
所以t(b)max=t(1)=0
所以只有b=1时满足h(lnb)≥0,
所以b∈{1}.
点评:本题考查实数的取值范围的求法,是中档题,解题时要认真审题,注意导数性质和分类讨论思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若f(x)=
2-x,x∈(-∞,1]
log81x,x∈(1,+∞)
,求满足f(x)=
1
4
的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少个?
(2)某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?
(3)将4个相同的白球、5个相同的黑球、6个相同的红球放入4各不同的盒子中的3个中,使得有一个空盒且其他盒子中球的颜色齐全的不同放法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

判断并证明函数f(x)=ln(1+e2x)-x的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校在2012年的自主招生考试成绩中随机抽取100名学生的笔试成绩,按成绩分组,得到的频率分布表如图所示.
成绩分组频数频率
(160,165]50.05
(165,170]0.35
(170,175]30
(175,180]200.20
(180,185]100.10
合计1001
(1)请先求出频率分布表中①、②位置相应的数据,再在答题纸上完成频率分布直方图;
(2)为了能选拔出最优秀的学生,该高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试?
(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A考官的面试,求第四组至少有一名学生被考官A面试的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=9x-2×3x+4,x∈[-1,2].
(1)已知f(x)=7,求x的值;
(2)设t=3x,x∈[-1,2],求t的最大值与最小值;
(3)求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,C,D是两个小区的所在地,C,D到一条公路AB的垂直距离CA=1km,DB=2km,AB两端之间的距离为4km.某公交公司将在AB之间找一点N,在N处建造一个公交站台.
(1)设AN=x,试写出用x表示∠CND正切的函数关系式,并给出x的范围;
(2)是否存在x,使得∠CND与∠DNB相等.若存在,请求出x的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若命题:“?x∈R,使得x2+(1-a)x+1<0”是真命题,求实数a的取值范围.
(2)已知命题p:|1-
x-1
3
|≤2,命题q:(x-1+m)(x-1-m)≤0(m>0),且命题q是命题p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log
1
2
(x2-4x-12)的单调递增区间是
 

查看答案和解析>>

同步练习册答案